
Patterns for Programming in Parallel, Pedagogically

Matthew C. Jadud
Franklin W. Olin

College of Engineering
Needham, MA, 02492

matt@transterpreter.org

Jon Simpson
Computing Laboratory

University of Kent
Canterbury, Kent, CT2 7NF
jon@transterpreter.org

Christian L. Jacobsen
Computing Laboratory

University of Kent
Canterbury, Kent, CT2 7NF

christian@transterpreter.org

ABSTRACT
Pipeline, Delta, and Black Hole are three simple patterns
used in concurrent software design. We recently presented
these and other patterns for parallelism at a nine-hour work-
shop for professional embedded systems developers. By
grounding these patterns in the context of robotic control
on the LEGO Mindstorms, we provided an engaging and
enjoyable educational experience for our “students,” and
reaffirmed that small, powerful languages have a place in
education for beginners and experts alike.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Human Factors, Languages

Keywords
CSP, LEGO, concurrency, fun, occam-π, parallelism

1. INTRODUCTION
For the last twenty years, concurrent software design has

been part of the curriculum at the University of Kent in
Canterbury, England. Over the past five years, we have ex-
perimented with introducing a sequence of laboratories re-
garding concurrent design focused on the problem of robotic
control[4]. We chose robotic control for the simple reason
that every robotic control system is fundamentally a con-
current system. A robot must always do three things “at the
same time,” meaning it must read from its inputs (Sense),
compute over those inputs (Think), and control motors and
other actuators (Act). In the programming language occam-
π [7], this can be modeled as three processes that execute
concurrently, flowing data from one process to the next (Fig-
ure 1).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’08, March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003 ...$5.00.

sense think act

Figure 1: A robot’s most basic process network.

We recently had the opportunity to distill material from
our classroom at the University of Kent into a three-day,
nine-hour workshop for professional embedded systems de-
velopers working for an IT solutions provider in Vienna,
Austria. The workshop, titled “Patterns for Concurrency,”
compressed the essential aspects of software design in a con-
current language like occam-π, while retaining the hands-on
nature of our semester-long robotics experience. This was
remarkably challenging for a number of reasons. Only hav-
ing nine hours of total contact time was one concern, and
the fear that we might be seen as “wasting the developer’s
time” was another. We were being offered 25% of a work
week for each of 10 full-time developers, which represents
a substantial amount of time to take away from a group’s
normal development activities.

We chose to maximize the amount of hands-on program-
ming that the developers would engage in, and developed a
series of exercises that exemplify patterns for parallel soft-
ware development that they could work through in pairs.
Furthermore, we decided to keep the hands-on nature of the
labs we had developed at Kent, and have all of their software
development target the LEGO Mindstorms robotics kit.

The use of robots was a risky proposition. First, trans-
porting 10 LEGO Mindstorms kits from Canterbury, Eng-
land to Vienna, Austria presented logistical problems. Sec-
ond, while we hoped the professional developers would ap-
preciate working with real hardware (as opposed to a sim-
ulator), we were concerned that they might consider the
LEGO robots “toys,” and as a result think that we were not
introducing powerful concepts that they could use in their
own practice. And lastly, we were afraid that the use of a
relatively unknown language like occam-π would turn them
off even further.

When asked what they would keep from the workshop,
half of the developers explicitly commented that they would
definitely keep the LEGO Mindstorms: they thought they
were fun (and sometimes funny) to work with, and—as em-
bedded systems developers—they always preferred working
with a real hardware platform whenever possible. When
asked what they would change, they made constructive sug-
gestions, but also acknowledged the time factor; one of the

participants said “I would add some bags of time, big bags.”
Lastly, when asked what they would throw away, they con-
sistently said words to the effect of “nothing.”

What follows is a three-paragraph introduction to the pro-
gramming language occam-π, and our motivation for pre-
senting concurrent and parallel software design on a small,
commercial off-the-shelf robotics platform like the LEGO
Mindstorms. To give a sense for how we structured the
exercises the developers worked through, we share three of
the patterns presented on the LEGO: Pipeline, Delta, and
Black Hole. We then close with a brief discussion of how
this material scales beyond these simple patterns presented
here, and some final comments from the developers regard-
ing their experiences learning a new programming language
and paradigm on new hardware in three short days.

2. occam-π IN THREE PARAGRAPHS
The producer/consumer pattern is simple in design and

infinitely complex and varied in execution. It is at the heart
of the communications between independent processors in
embedded systems (in the form of I2C and SPI protocols),
inter-process communications on typical desktop computers,
and interactions between machines on the Internet. In lan-
guages like occam-π, this is a naturally occurring pattern,
and can be instantiated in parallel with only a few lines of
code. In occam-π, a process that does nothing but produce
the number forty-two would look like:

PROC producer (CHAN INT ch!)
WHILE TRUE

ch ! 42
:

The corresponding consumer would look like:

PROC consumer (CHAN INT ch?)
INT tmp:
WHILE TRUE

ch ? tmp
:

The producer, in an infinite loop, outputs the value 42

on the channel ch. Output in occam-π is indicated by the
‘bang’ operator, !. This is a blocking communication: ex-
ecution of this process blocks (and deschedules) until the
corresponding read happens in the consumer. In the con-
sumer, a blocking read takes place on the channel ch until
the channel is ready, at which point the value (42 in this
case) is read into the variable tmp. A read on a channel is
indicated by the ?. Both of these symbols come down to us
from Hoare’s Communicating Sequential Processes (CSP)
algebra[2].

The producer/consumer processes are instantiated in a
third process, main:

PROC main ()
CHAN INT ch:
PAR

producer(ch!)
consumer(ch?)

:

In occam-π, indentation indicates block scope. In the pro-
cess main, the PARallel process indicates that the processes
producer and consumer should be executed in parallel, and
the PAR will exit when all of its child processes have exited.
In this particular case, the process main never exits, because
its two children forever schedule and deschedule, communi-
cating the value 42 over the channel connecting them. It is
up to the occam-π compiler and runtime to make sure that
this concurrency (on a single processor) or parallelism (on
multiple processors) takes place correctly.

These three processes taken together represent a complete
occam-π program, and completely implement the produc-
er/consumer pattern.

2.1 Why occam-π on the LEGO?
Put simply, we think that introducing concurrency on a

small robotics platform is authentic, constructive, and
fun[3].

Introducing concurrent software design in the context of
a robot is authentic for two reasons. First, robots need to
juggle the reading of sensors, computing over those sensor
values, and control of motors and actuators continuously.
Second, toy robots like the Mindstorms, as well as com-
mercially available robots like iRobot Roomba, must deal
with exactly the same problems; regardless of scale, this
fundamental need for concurrency does not go away.

We attempt to remain true to the notion of construc-
tivism; in particular, we try to structure our exercises so
that students must learn on their own some critical aspect
of the language or a pattern for designing concurrent so-
lutions to control problems as part of a larger problem[5].
By leaving room for the learner to direct part of their own
learning in this process, we hope that the lessons learned
are that much more powerful.

Lastly, we believe strongly that the learning activities we
give our students should be fun. Creative professionals
in the real world strive to find interesting and engaging
projects that they can enjoy working on. We are always
working to provide similarly challenging, yet enjoyable tasks
that let students express not only their abilities, but also
their passion for learning new and interesting things about
computing.

3. THREE PARALLEL PATTERNS
Pipeline, Delta, and Black Hole are the first three pat-

terns for parallel software design that we presented to the
developers during the workshop. Each of the patterns was
presented in much the same way: a single sheet of paper
for each pattern with a process diagram, explanation, and
code sample was provided to the developers. In addition,
one or more coding challenges were put to them, in which
they were expected to employ the pattern as part (or all)
of the solution to a robotic control problem. Working in
pairs, they would discuss their way through exploring the
language (we worked to minimize lecture and maximize the
time we spent as “guides on the side”), sometimes with one
member of the team exploring the language while the other
looked up a detail of the LEGO API or a language feature
in the documentation provided.

3.1 Pipeline
The pipeline is a fundamental concurrent pattern in any

process-oriented language. Data comes in at one end of
the pipeline, is manipulated by one or more processes, and
output at the other end. It can easily and safely be extended
at the start, in the middle, or the end of the pipe. This
pattern is typically represented by a sequence of one or
more processes (Figure 2).

alice bob cy
a2b b2c

Figure 2: The Pipeline pattern.

This pattern is easily represented in occam-π. For each
pair of processes in the pipeline, a channel is declared and
used to connect the two processes together. Here is a three-
stage pipeline with processes alice, bob, and cy:

CHAN INT a2b, b2c:
PAR

alice (a2b!)
bob (a2b?, b2c!)
cy(b2c?)

The processes at the end of the pipeline typically only have
one channel end, as the pipeline fits into a larger process
network. In our example, alice has only the output end
of a channel, while cy has an input end. Processes in the
middle of the pipe will have the input end of the channel
connecting them to the process on their left, and the output
end of a channel connecting them to the process on their
right.

3.1.1 In the classroom
When teaching this pattern, we introduce it in both the

large and in the small. In the large, we introduce the notion
of a robot having three primary functions: to take inputs
from the world, to process them in a “brain” of some sort,
and to then output commands to its motors and other actu-
ators. This pattern of Sense → Think → Act is a common,
concurrent pattern in all robotic control applications (Fig-
ure 1).

In the small, we talk about specific tasks, like processing
sensor data. Students might be reading from a light sensor
(which reports an intensity between 0 and 100), and they
might want to only send a message to the “Brain” process
when that value is above some value (say, 50). This ends up
looking like Figure 3.

sensor filter brain ...
Figure 3: A typical (small) robot control pattern

3.2 Delta
The Delta pattern allows replication of data, facilitating

multiple pieces of a network to process or react to it. A
delta process effectively copies all input to two outgoing
channels, introducing a one-stage buffer while doing so. A
typical delta is shown in Figure 4.

delta

alice

bob

Figure 4: Delta

Due to occam-π’s communications operators, writing a
delta is straightforward. Three channels are declared, and
values are read from the first of these channels. After reading
a value from the input channel, that value is passed along
on both of its output channels in parallel.

PROC delta (CHAN INT in?, out1!, out2!)
WHILE TRUE
INT x:
SEQ
in ? x
PAR

out1 ! x
out2 ! x

:

3.2.1 In the classroom
On the robotics platform, the delta is introduced as a

way for the process network to expand beyond a simple
pipeline and allow components within the pipeline to main-
tain their simplicity, rather than doing multiple things in
a single process. Taking the example of a pipeline control
program from Figure 3, the student may wish to display
the sensor value, as well as filtering and passing messages to
the brain process. By using a delta process, a copy of the
sensor reading can be used both by the brain and by the
screen process in parallel.

delta

screen

brain

sensor

Figure 5: Delta in practice

The Delta pattern, at this stage in the learning process,
can be seen as critical to maintaining the idea of many simple
processes and promoting the idea of parallel composition,
instead of adding complexity to existing processes.

3.3 Black Hole
The Black Hole pattern allows us to consume data from

upstream and make it disappear into the void. In terms of
plumbing, it is a “sink” or “drain”: data goes in, and it never
comes out. In a picture, it looks like Figure 6.

black.hole...
Figure 6: The Black Hole

We have already demonstrated the code for a black.hole

process in this paper: the consumer on page 1 is a canoni-
cal black hole process. A black.hole process continuously
reads from a channel into a temporary variable, and then
does absolutely nothing with that value.

3.3.1 In the classroom
The Black Hole pattern may not seem obviously useful at

first glance, nor may it seem like a“pattern,”given that it is a
pattern composed of a single process. As a program evolves,
however, this pattern becomes immensely useful. Without
the black.hole process, shrinking a process network (in
particular, removing a delta) is a relatively complex en-
deavor. For example, if a programmer wants to remove the
screen process from their network (building on the previous
example), she must first remove the delta and the screen

process, remove the channel declaration for the channel that
connected them, and then re-wire the sensor and filter

processes together. This pruning and rewiring of the process
network is captured in Figure 7, part (a).

delta

screen

filter

sensor

delta

black.hole

filter

sensor

(a)
(b)

Figure 7: black.holes are easier to create than prun-
ing and rewiring a process network.

Alternatively, the programmer can simply remove the
screen process, and instead insert the black.hole. This
process consumes and throws away all the data flowing into
it, which “plugs” the second branch in the delta, and pre-
vents the delta from deadlocking because one of its outputs
is not being read (Figure 7, part (b)). Therefore, it is not
so much as a critical pattern in the initial design of a pro-
cess network, but moreso a critical pattern to recognize as
a process network evolves. Ultimately, a clean process net-
work will not have any black.hole processes in it, but we
teach our students how to use them so they can produc-

tively spend their time developing interesting programs, as
opposed to getting bogged down in a continuous network
refactoring process.

3.4 Bringing things together
The patterns for concurrency that we introduced are not

intended to be used in isolation. occam-π processes are
easily composed to produce larger networks of processes, as
channels provide natural points to “plug together” one or
more processes (or networks of processes). Therefore, each
one of these patterns becomes a directly usable building
block for writing larger and more interesting programs.

The developers worked towards building robots that were
able to express a number of behaviors simultaneously. First,
they worked towards building a line-following robot. Then,
they added an additional light sensor that would alter the
behavior of the robot based on the ambient light in the
room. The critical thing about this addition was that they
were encouraged to leave as much of their existing process
network in place as possible while making these changes.
This is actually a very achievable goal when programming
in occam-π, as the language encourages a clean separation
of concurrent concerns. In the world of robotic control, this
layered architecture is generally referred to as a behavioral
control architecture or the subsumption architecture.

4. FROM APPLICATION TO REFLECTION
To close our workshop, we set aside an hour to reflect on

what the developers had covered in the workshop. They
had spent two intense days working with a new language
and a new hardware platform implementing patterns for
concurrency many of them thought they knew well. To
put put their reflection in context, we encouraged them to
consider a problem they knew well—the implementation of
software for the control of telephones—and consider how
they would do this familiar task in a new language and
paradigm.

As they had just seen the patterns that make up the
building blocks of concurrent and parallel software design,
we presented some additional material to put it in a larger
context. Our group has been experimenting with the use
of the subsumption architecture for concurrent runtime de-
sign and robotic control[6]. Based on the work of Rodney
Brooks, the subsumption architecture involves the layering
of concurrent processes, each of which encapsulates some
simple behavior, and through the composition and layering
of those, more complex behaviors can be expressed[1].

In conjunction with the patterns they had seen, these
ideas provided the developers with a powerful set of tools to
think about and discuss how they develop embedded con-
trol software. A process they were intimately familiar with
suddenly became new again, and as one developer said, “it
is like flipping my mind upside down.” Far from being frus-
trated, they found the process refreshing and challenging—
they were taking new knowledge and using it as a lens to
reflect on and rethink the design and implementation of
software they knew well.

5. CONCLUSION
There are many differences between a professional embed-

ded developer with 10 or more years experience and a first-
or second-year undergraduate. For the professional, a three-
hour workshop where they get to dive into a new language
on a small, yellow robot was not only novel, but entertain-
ing and fun. In taking material we originally developed for
classroom use into that “real world,” we have returned with
some very encouraging feedback.

We asked all ten of the developers questions relating to
their opinion of the workshop and what effects it was likely
to have on them in the future. When asked to indicate
Yes, No, or Maybe to the statement “This workshop was a
good use of my time,” every one of the ten developers taking
part in the workshop said yes, it was a good use of their
time. Every one of the developers also said yes, they would
recommend this workshop to their colleagues. This kind of
unanimous endorsement was very encouraging.

Eight of the ten developers said that the workshop pro-
vided them with new perspectives that will influence their
professional practice; two reported maybe. The same eight
also said they would experiment further with the tools and
materials provided, and that they would also continue read-
ing in the supporting papers and documentation that we
had collated and presented to them over the course of the
three days; the same two said maybe.

This experience has encouraged us to continue to develop
our ideas and materials regarding the teaching of concur-
rency. We believe that the grounding of these ideas in a
real-world context (like the LEGO Mindstorms) is a critical
part of motivating the need for concurrent software design.
And the developers’ reactions to the LEGO were so encour-
aging that we are loathe to give up the tactile and playful
interactions that this platform encourages in the classroom.
In the end, it’s just too much fun for everyone involved...
and that seems to be important.

Acknowledgements
The work presented here builds upon countless years of
efforts by many. Thanks are due to Damian Dimmich for
helping with the delivery of the workshop itself, as well as
his ongoing contributions to the software that makes this
kind of work possible. Thanks also to Ralph Miarka for
hosting our workshop, and to Peter Welch and the rest of
the Concurrency Research Group at Kent for their ongoing
efforts in maintaining and improving occam-π.

Obtaining the software
If you are interested in exploring concurrency on small
robots like the LEGO Mindstorms, we suggest you check out
both occam-π (www.occam−pi.org) and the Transterpreter
project (www.transterpreter.org). From the Transter-
preter site, you can download a complete development en-
vironment for occam-π programs that allows you to write
occam-π programs that run on computers running Win-
dows, Mac OSX, or Linux in addition to the LEGO Mind-
storms RCX. The Transterpreter is an actively developed
open-source project made available under the GPL.

6. REFERENCES
[1] R. A. Brooks. A robust layered control system for a

mobile robot. IEEE Journal of Robotics and
Automation, 2(1):14–23, March 1986.

[2] C. Hoare. Communicating Sequential Processes.
Prentice-Hall, Upper Saddle River, NJ, USA, 1985.
ISBN: 0-13-153271-5.

[3] C. L. Jacobsen and M. C. Jadud. Towards concrete
concurrency: occam-pi on the lego mindstorms. In
SIGCSE ’05: Proceedings of the 36th SIGCSE technical
symposium on Computer science education, pages
431–435, New York, NY, USA, 2005. ACM Press.

[4] C. L. Jacobsen and M. C. Jadud. Concurrency, robotics
and robodeb. 2007 AAAI Spring Symposium on Robots
and Robot Venues: Resources for AI Education, 2007.

[5] S. Papert. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, Inc., New York, New
York, 1980.

[6] J. Simpson, C. L. Jacobsen, and M. C. Jadud. Mobile
Robot Control - The Subsumption Architecture and
occam-pi. In P. Welch, J. Kerridge, and F. Barnes,
editors, Communicating Process Architectures 2006,
pages 225–236, Amsterdam, The Netherlands,
September 2006. IOS Press.

[7] P. Welch and F. Barnes. Communicating mobile
processes: introducing occam-pi. In 25 Years of CSP,
volume 3525 of Lecture Notes in Computer Science,
pages 175–210. Springer Verlag, Apr. 2005.

