
String Formatting Considered Harmful

for Novice Programmers

Michael C. Hughes, Matthew C. Jadud, Ma. Mercedes T. Rodrigo

June 1, 2010

Abstract

In Java, System.out.printf and String.format consume a special-
ized kind of string commonly known as a format string. In our study of
first-year students at the Ateneo de Manila University we discovered that
format strings present a substantial challenge for novice programmers.
Focusing on their first laboratory we found that 8% of all compilation
errors and 100% of the exceptional, run-time behavior they encountered
were due to the improper construction of format strings. Format strings
are a language unto themselves embedded within Java, and they are diffi-
cult for novice programmers to master when learning to program. In this
paper, we present exemplars of students’ problematic interactions with
the Java compiler and run-time environment when dealing with format
strings, discuss these interactions, and recommend possible instructional
interventions based on our observations.

1 Introduction

We are interested in the behavior of novice programmers while they are engaged
in the act of programming. Specifically, we are focused on the process by which
novices go from incomplete, but correct code, to code that completes a given
homework assignment or laboratory task. By better understanding what our
students do, we hope to develop interventions to improve the state of program-
ming instruction.

In this particular study, we looked at the code written by students on a
compilation-by-compilation basis. In our database, we captured a complete
snapshot of their code after each compilation. This data is a source for many
automatic analyses, and simultaneously provides a rich view into the growth
of a student’s code. The data we are investigating here is taken from the first
laboratory in the first course of 143 students at the Ateneo de Manila. Through
automated means we discovered that 8% of the syntax errors generated by these
students and 100% of their run-time errors resulted from their attempt to use
format strings.

Format strings are common in many languages. They provide a mechanism
for specifying a message template at compile time that will be displayed with one

1

or more values substituted for specially formatted placeholders in the string. In
Java, the following print statement would, when executed, output the message
"pie equals 3.14".

float pie = 3.14159;
System.out.printf("pie equals %.2f", pie);

The symbol %f is a placeholder that indicates that an numeric value should
be substituted. In particular, a floating-point value, and further, only two
numbers should appear after the decimal point. So, even though the value of
pie is 3.14159, the message printed when this code is executed will be "pie
equals 3.14".

1.1 Motivation

We have several reasons for focusing on format strings. Given that format
strings are fragile at compile- and run-time, and represent another level of
pattern-matching within an already complex syntax, it is unfortunate when
they become the focus of input/output operations in introductory textbooks.
Further, we say they are fragile at compile-time because they are a language
unto themselves. Unlike the rest of the Java programming language, they are
unchecked by the compiler. As a result, it is easy for a novice to write a format
specifier that is incorrect, and fail to discover this fact until they compile and
run their program. It is relatively easy to write a format string that passes the
Java syntax checker, but is incorrectly specified. This turns a “syntax error”
into a run-time exception.

In this study, we take format strings to be a limited, special case of a much
larger problem in language design and software construction, which is the em-
bedding of one programming language into another. This combination of com-
plex issues—a language embedded within a language, the latter prone to errors
that are discovered at run-time—shows up when programmers embed SQL as
strings into their programs, or languages like Javascript or PHP in the midst
of HTML. All of these practices make it easy to delay the discovery of errors
from compile-time to run-time, which does not strike us as a good situation for
novice programmers to be in.

We begin by looking at related work and discuss the nature of our data
collection. We then proceed to explore the behavior of several students in-depth,
a process which reflects the analysis we undertook in preparing this work. Lastly,
we discuss the behavior we observed as possible evidence of strategy formation
on the part of novice programmers in light of recent pilot studies exploring the
behavior of students engaged in debugging tasks and their ability to become
“unstuck” in the face of adversity.

2

2 Background

Studies have indicated that students struggle a great deal with reading, writing,
and understanding programs as they come out of their introductory program-
ming course. McCracken et al. found that the majority of students could not
successfully implement software that met a simple problem description[11]. Lis-
ter et al. explored students’ ability to read programs and trace their execution
on paper, and found that many of their students found this task challenging[9].
This is not a new trend: Sporher and Soloway explored the formation of goals
and plans in novice programmers in the mid-1980’s, and it appeared then as it
does now that writing a correct program to accomplish a well specified task is
something that many students can not do[17, 18].

Graduates of the “Bootstrapping Computer Science Education Research”
and “Scaffolding Computer Science Education Research” workshops have also
made a focus of novice programmers[3]. The first publications from this group of
collaborators tended to yield similarly negative results—that novices find many
aspects of learning to program difficult[8]. As a result, some of the graduates
of these workshops have begun to focus their work on questions of what their
students can do, rather what their students can not[2, 7, 16].

Similarly, our fundamental question relates to what our students do when
they are learning to program. The question we seek an answer to is deceivingly
simple: what are students doing when they are writing their first programs? In
our studies to date we have examined students in their first university-level pro-
gramming course. These students are typically working on small, well-defined
homework sets or laboratories, where they are given a piece of Java as a start-
ing point. This code, typically 30-60 lines long, is syntactically and stylistically
correct, and is related to both their course textbook and lectures. Sometime
after they are given this starter code and a problem statement, most students
find themselves in a battle with the compiler as they attempt to write code that
correctly expresses their ideas.

In our observations of novices and their interactions with the compiler, we
observed 130 students at the University of Kent over the course of the 2003-2004
and 2004-2005 academic years. These students were enrolled in a year-long intro-
duction to object-oriented programming, and generated roughly 42,000 unique
compilation events across 2000 programming sessions over the course of two
years. At the Ateneo de Manila University during the 2006-2007 academic year,
143 students were observed in their first semester of Computing I, and gener-
ated 28,000 compilation events for study. In both cases, students were given
the opportunity to opt-in to the study, and the collection of data was effectively
invisible to the students; students taking part in the study experienced nothing
different in their activities than those who chose not to take part. Observations
took place in classrooms in the Department of Information Systems and Com-
puter Science—computing laboratories that also served as lecture classrooms.
Students in both studies worked singly, with help available from staff during the
laboratory period. More detail about both of these populations can be found in
[4] and [19], respectively.

3

0 

5 

10 

15 

20 

25 

unknown 
variable 

; 
expected 

bracket 
expected 

missing 
return 

unknown 
method 

illegal 
start exp 

Pe
rc
en

ta
ge
 o
f a

ll 
er
ro
rs
 

Error type 

Most common syntax errors 

Ateneo 

Kent 

Figure 1: The most common syntax errors encountered by students at the
University of Kent and the Ateneo de Manila. (Full corpus, both institutions.)

In replicating our initial data collection, our collaborators at the Ateneo
de Manila University observed behavior that reinforced many of our original
findings. The distribution of syntax errors encountered by first-year students at
Ateneo was nearly identical to those encountered by students at the University
of Kent (Figure 1), and the speed which students made and corrected syntax
errors while engaged in their programming was similar as well (Figure 2). In
addition, they calculated the rate at which students dealt with repeated errors,
a rate which we call the error quotient; this gives us a sense for how students
deal with errors over time, and both studies imply that there is some correlation
between the rate at which students correct syntax errors and traditional metrics
for academic performance (e.g. grades).

In this study, we have focused on one aspect of novice compilation behavior.
In particular, we examined how students dealt with format strings as argu-
ments to methods like System.out.printf and String.format. We begin by
presenting our methodology for exploring the students’ behavior, followed by
several small cases, or vignettes, exemplifying how students wrestled with for-
mat strings and attempted to deal with their complexity. Finally, we close with
a discussion of overall observations about novice strategies for error recovery
distilled from this study and others.

3 Methodology

Students face challenging errors, both at compile-time and run-time. It is not
clear what roles the programming language, the development environment, and

4

0 

5 

10 

15 

20 

25 

30 

35 

10  20  30  40  50  60  70  80  90 

Pe
ce
nt
ag
e 
of
 a
ll 
co
m
pi
la
/
on

s 

10 second bins 

Time between compila/ons 

Ateneo 

Kent 

Figure 2: The time between successive compilations as observed in students at
the University of Kent and the Ateneo de Manila. (Full corpus, both institu-
tions.)

instructor play in the success of students overcoming the errors they encounter.
What is clear is that we can collect rich data to begin exploring how students
learn to overcome syntax and run-time errors while learning to program.

Case studies help us explore, in depth, environments where the phenomenon
and its context are deeply intertwined[20]. Our goal is to better understand
the behavior of novice programmers who are struggling with compilation and
run-time errors in writing their first Java programs, so that we might tailor
instructional interventions and tools to better support the learning process.
This is because we believe that students who spend (literally) hours attempting
to get their program to compile cannot possibly be learning about higher-level
concepts like inheritance, encapsulation, and the role of state in control flow (to
name just a few).

Our investigation begins with the instrumentation of BlueJ, so that a copy
of a student’s program, as well as any error messages emitted by the compiler,
are captured on a remote server with every compilation. Likewise, with every
class instantiation and method invocation, we capture information about the
execution of their program. This yields a large, complex data set containing a
sequence of snapshots of their code and run-time behavior over the course of
one or more programming sessions.

A full case study of a single student would span the course of an academic
year, and encompass many dozens of programming sessions. In this paper, we
are not building a case regarding a single student, but instead building a case
regarding the complexities of string formatting. Specifically, we found in our

5

qualitative exploration of the data that beginning students can encounter a
surprising number of confusing errors when writing code like:

System.out.printf("Cash left: %5.2f", cash);

In the study presented here, our exploration of programming sessions fo-
cused on the first laboratory taught at the Ateneo de Manila University in their
introductory programming class during the 2006–2007 academic year. Origi-
nally reported in [19], this study observed 143 students engaged in laboratory
exercises while enrolled in Computing I, which may be considered a “CS1” as
typically referred to in the literature.

By looking at their first laboratory task, we could focus on the problems
encountered by students programming for the first time at the University. We
began by reading through many dozens of these sessions, looking for the kinds of
syntactic challenges students faced. From a purely syntactic reading, we gleaned
insights similar to those found in our earlier studies [5]. In our first iteration
of reading and annotating the students’ programs, string formatting did not
present itself as being particularly problematic.

It was the inclusion of run-time errors in our data collection that provided
critical insight into the students’ compilation behavior. In our second reading of
individual cases, we looked not only at compile-time errors, but also the run-time
errors students encountered. Run-time error analysis required the researcher
to copy programs that successfully compiled into the BlueJ environment, and
then execute the same sequence of object creation and method invocation steps
that the student took. As a result, we discovered a number of things, the
most important being the preponderance of exceptions thrown as a result of the
incorrect use of format strings.

The apparently high occurrence rate of string formatting exceptions led to
the automation of program execution, revealing that 100% of the run-time errors
encountered by students working on this code were the result of string formatting
errors. Our selection of vignettes represents students with low, average, and high
error quotients as described in other studies[5, 19].

4 Vignettes

Knowing that the run-time problems students encountered were restricted to
format strings, we revisited students’ compilation behavior to develop a more
complete picture of how compilation and run-time behavior were intertwined.
What we present here are three vignettes, or “data stories,” that we hope will
give the reader deeper insight into the student behaviors that we have observed
as they attempt to develop strategies for dealing with the complexity of correctly
authoring format strings in Java. Students were engaged in writing programs
of roughly the same size and complexity as the Ticket Machine program from
the second chapter of Objects First with Java by Barnes and Kölling, with a
similar amount of support code provided as a starting point[1]. All sessions

6

were captured during a normal laboratory period, and are of roughly the same
duration.

We begin by looking at the work of Adam, a student who struggled a great
deal with what many programmers would consider to be very basic syntactic
errors involving string composition. We then examine both Benita and Cosme,
whose efforts focuses us in fully on the challenges students face when dealing
with format strings, both at compile-time and at run-time.

4.1 Adam: A Beginner’s Difficulties

In this programming assignment, Adam’s task is to write a program which
manages the ticket sales of a typical cinema. We start our trace in the middle
of his session, after he has attempted 9 compilations over 17 minutes. He is
currently flushing out a new method, called details, for his Ticket object.
This method’s purpose is to retrieve a String representation of the Ticket,
which will include the title of the movie, the price of the ticket, and the seat
number assigned to the ticket holder.

His first attempt at this method looks like this:1

48 public String details()
49 {
50 System.out.println("’" +movieName + "’ " +

"(P" ticketPrice + ") - seat" + seatNumber);
51 }

When Adam compiles this version, he receives the error message

50: ’)’ expected

A careful reading of line 50 in his code shows that all open parentheses are
indeed closed, so this is not what we call a literal syntax error. A literal error
is a syntax error whose true cause is identified in the compiler’s error message.
If responding to a ’)’ expected error message by placing a closing paren at
the correct spot within the indicated line resolves the error, then that error is
literal. However, errors often turn out be non-literal, meaning that the message
provided by the compiler in fact does not indicate how to solve the problem. To
use Adam’s code as an example, adding a) anywhere in line 50 will not help
Adam solve the underlying syntax error. Novice programmers tend to struggle
with these errors, as they require a good deal of experience and confidence to
properly interpret and correct. A careful inspection of the above will reveal that
this error results from improper string concatenation. Adam is missing a + sign
to correctly combine the quoted text "(P" and the variable ticketPrice. The
slot where the missing + should go is marked with a carat in the line below

1Lines have been broken artificially to fit the printed page. Original sources did not break
long lines.

7

50 ... + "(P" ticketPrice + ") ...
^

The compiler is unable to recognize this problem and thus reports a ’)’
expected error. Adam’s immediate reaction is to avoid responding at all and
instead shift his attention to a different part of the program. We see this “move
on” behavior in response to difficult (usually non-literal) errors in many student
sessions.

In particular, Adam decides to “move on” from the Ticket class and begin
creating the Cinema class his project requires. He spends a few minutes fleshing
out member variables and easily fixing a few literal syntax errors until he reaches
the point at which compiling Cinema requires that the dependent class Ticket
also compiles correctly. Forced to return to the ’)’ expected error in his
details method, Adam begins by responding literally to the error and placing
a) at the end of the line.

50 System.out.println("’" +
movieName + "’ " + "(P"
ticketPrice + ") - seat" + seatNumber));

Compiling this revision, Adam still receives the same error message from the
compiler. This of course results from the fact that the improper concatenation
occurs before Adam’s edit, so the compiler will report this error first and exit.

When his attempted literal edit does not fix the error, Adam deletes the
) he added to the end of the line. Unable to determine the source of the
error, Adam again displays “move on” behavior in turning his attention to
other areas of his Ticket class. After fixing a few errors in his constructor,
he returns to the details method and appears to be stuck. He compiles the
code repeatedly without making any changes. We observed this phenomenon of
unedited repeated compilation in a number of sessions, though its intent remains
unclear. Perhaps Adam needs to refresh the error on the screen, or maybe he
hopes that the compiler may eventually give his a more detailed error message.
In any case, Adam soon exits this cycle and attempts to radically change the
details method to read

48 public String details()
49 {
50 Ticket details = new Ticket();
51
52 details.format("’" + movieName +

"’ " + "(P" ticketPrice + ") -
seat" + seatNumber);

53
54 }

What prompted this drastic edit is unknown, but our best guess is that Adam
had seen a String.format method used either in an instructor’s example or in a

8

fellow student’s work. His attempt to instantiate and use a Ticket object within
the Ticket class shows a rather large misconception of how objects work. This
is further magnified by the fact that his Ticket class does not have a format
method in his current version.

Despite these problems, the compiler still reports the same ’)’ expected
error, now on line 52. While we might like the compiler to say cannot find
symbol - format, it does not, as the compiler will attempt to process argu-
ments before method invocations on those arguments. Again, Adam “moves
on” to other work on his Cinema and Driver classes. Of course, he is forced to
come back when these will not compile without a clean report from the Ticket
class which they both rely on. Returning to details, Adam makes the following
change

48 public String details()
49 {
50 Ticket details = new Ticket();
51
52 System.out.println(string.format("’ %s" +

movieName + "’ (P %s" + ticketPrice + ") -
seat" + seatNumber);

53
54 }

In adding format elements (such as %s) to his concatenation, we find that
he managed to add in the previously missing + sign before the ticketPrice
variable. However, Adam also forgot to add a parenthesis at the end of the
line to mark the close of the println method. Thus, when he compiles, he still
receives the error

52: ’)’ expected

Only now, the error is a true literal syntax error! Adding a closing paren-
thesis) will actually make this line of code compile cleanly. Sadly though,
Adam responds as if this error were still non-literal. The compiler seems to
have conditioned him to respond this way.

Adam does not seem to realize what his fundamental error was or that he
fixed it. He tweaks this version a few times by substituting print for println
and adding one more format element - %s - into his concatenation. When none
of these edits work, Adam finally makes the necessary literal correction and
adds a closing parenthesis to the end of the line. His code now reads

48 public String details()
49 {
50 Ticket details = new Ticket();
51
52 System.out.print(string.format("’ %s" +

movieName + "’ (P %s" + ticketPrice + ") -

9

seat %s" + seatNumber);
53
54 }

Adam finally corrects his persistent ’)’ expected error. His next few com-
pilations mark a series of rapid improvements in which Adam correctly fixes se-
mantic and syntactic errors such as the unnecessary instantiation of a Ticket ob-
ject in the details method, the capitalization of String.format, and the need
to return rather than print the formatted value to comply with his details
method’s declaration. His code now reads

48 public String details()
49 {
50
51 return (String.format("’ %s" + movieName +

"’ (P %s" + ticketPrice + ") - seat %s" +
seatNumber));

52
53 }

Compiling this version returned no syntax errors. Thus, after 44 compila-
tions, Adam’s code finally builds cleanly for the first time.

Adam immediately proceeds to run-time testing his Ticket class in BlueJ.
After manually instantiating a basic Ticket object, he invokes its details
method. BlueJ responds by reporting that a MissingFormatArgumentException
occurred when attempting to execute line 51.

Adam responds to this error directly by comma-delimiting the format string
parameters at the end of the method call.

48 public String details()
49 {
50 return (String.format("’ + %s P %f - seat %s"

movieName, ticketPrice, seatNumber));
51 }

Compiling this change results in the return of the ’)’ expected error. The
cause of this is another instance in which quoted literal text and a variable are
not connected or separated properly, as shown below

... seat %s" movieName, ...
^

While the error is again non-literal, its underlying cause is completely dif-
ferent from what Adam experienced previously. Rather than a + concatenation
symbol, a comma is needed to separate the quoted text and the variable name
as two distinct arguments to the format method.

However, Adam immediately recognizes this case as another instance of his
previous solution to the problem of a non-literal ’)’ expected error and makes
the change we see below within 27 seconds

10

48 public String details()
49 {
50 return (String.format("’ + %s P %f -

seat %s" + movieName, ticketPrice,
seatNumber));

51 }

This quick revelation is perhaps an indication that Adam is beginning to
differentiate at some level between literal and non-literal syntax errors. However,
it seems that rather than closely examining his code to discover the cause of
an error, he may rely on selecting a response from an internal library of past
experience. These “conditioned” responses may play an intermediary role in
allowing a novice to gain expertise in diagnosing and resolving non-literal errors.

Adam is moving toward the correct implementation of String.format,
which requires that all variables be passed as comma-separated method pa-
rameters in the order they will appear in the resulting string. However, his
current version includes the variable movieName as part of the string concate-
nation rather than as a comma-separated parameter.

When he invokes this method in BlueJ, Adam finds that this version of
details throws a IllegalFormatArgumentException. This results from Java’s
failed attempt to format the String seatNumber, which in the format string
is declared to be a floating-point number by the use of %f. Put simply, the
problem is not the order of his format string specifiers, but instead the fact
that movieName should be passed as a parameter, and not be included in the
concatenation itself. Adam attempts a number of edits to fix this problem,
none of which work. His most notable attempt to eliminate his run-time error
is when he splits the tasks of string concatenation and returning the string over
two lines, as in

48 public String details()
49 {
50 String details = String.format("’ + %s

(P %5.2f) - seat %s \n" +
movieName, ticketPrice, seatNumber);

51 return details;
52 }

We do not actually know why Adam did this, but perhaps he thought he
could either solve the problem or better isolate the source of the run-time error
if he separated the execution into two distinct tasks (formatting and returning,
in this case). We find this separation of tasks fascinating, and we will return to
explore this idea in depth later.

Despite his continued problems, we note that Adam does make progress
toward a semantically correct program by adding the formatting specifier %5.2f
to his literal string argument. This edit forces the displayed ticket price to
be at least five characters wide and have two decimal places of precision, as

11

the assignment requires. However, when he executes his code again, the same
IllegalFormatArgumentException occurs. This is because Adam has not yet
realized that instead of string concatenation, he needs to use a comma between
the literal text and the variable movieName.

Adam responds to this run-time exception by collapsing the tasks back into
one line. After a few more cycles of code experimentation which result in this
same exception, Adam finally corrects his string concatenation completely, as
shown below

50 return String.format("’ %s (P %5.2f) -
seat %s \n", movieName, ticketPrice,
seatNumber);

Entering appropriate parameters to construct a Ticket object and then exe-
cuting his details method manually in BlueJ, Adam now avoids all exceptions
and instead receives the return value of the details method when applied to a
Ticket for the movie Transformers

OUTPUT: ’ Transformers (P 120.00) - seat a1

Adam makes one final tweak to make sure the movie title is properly quoted,
and ends his programming session.

OUTPUT: ’Transformers’ (P 120.00) - seat a1

As a whole, Adam’s session, which lasts 97 minutes, is distinguished by
steady though extremely slow progress. He began the session with no details
method for his Ticket class, and managed to end with a syntactically and
semantically correct implementation. However, he likely spent far more time on
the problem then either he or his instructors would have liked. This is especially
notable because he never fully developed and tested his other classes (Cinema
and Driver), at least in this recorded session. In particular, his Cinema class
contained a printSummary method which required labeled output formatted to
two decimal places of the total sales of the Cinema. When exiting his session,
his printSummary method contained this statement

52 System.out.printf("Total Sales: " +
"P %4.2f" + totalsales);

This appears to be another problematic case of string formatting. As it
stands, line 52 will likely result in a run-time exception because the variable
totalsales is not properly passed as a separate argument. We are unsure if
Adam could solve this problem easily given the struggles he endured in the past
97 minutes. In this same period of time, Benita and Cosme fare better.

12

4.2 Benita: Towards Strategy Formation

Adam clearly found string concatenation and output formatting difficult, and
he was not alone. Attempting to combine multiple variable values of different
types and their associated text labels into a single coherent string proved to be
challenging for many of the novice programmers that we observed. In a study
of 185 students tackling the MobilePhone programming assignment, we found
that 8% of all syntax errors and 100% of all run-time errors came from lines
which formatted output. Given this systematic level of difficulty, it seems that
the tasks on these lines are worth examining closely for ways to reduce their
difficulty. Perhaps the best way to accomplish this is to investigate the solutions
to the complexity of string formatting which students naturally develop.

Consider the case of Benita, a student attempting to code a MobilePhone
class which can track phone calls and text messages as well as add and subtract
payment credits accordingly. We jump into Benita’s session as she writes a
method called printSummary, which will output a well-labeled textual summary
of all the state variables of her MobilePhone. The required concatenation,
formatting, and printing is similar to Adam’s task. Benita’s current code is
shown below

61 public void printSummary()
62 {
63 System.out.printf(" Credits left: "

"creditsLeft = P%5.2f \n",
getLoadLeft());

64 System.out.println("Total call duration: "
getTotalMinutesCalled() + " mins.");

65 System.out.println("Rate per call: " +
callRate);

66 System.out.println(
"Number of text messages sent: " +
getNumTextMessages());

67 }

Upon compilation, Benita receives Adam’s favorite error message

63: ’)’ expected

A close look at line 63 reveals, as we might fear, a non-literal error in which
Benita is missing a + sign to correctly concatenate her quoted literal strings.
Benita makes the following edit in response

63 System.out.printf(
" Credits left: creditsLeft = P%5.2f \n",
getLoadLeft());

This fixes her problem, as she eliminated the need for concatenation in line
63 entirely by pushing all her quoted strings together. Compiling this version
yields the message

13

64: ’)’ expected

We realize that her missing + mistake is not isolated, as it also occurs in the
very next line of code, line 64.

64 System.out.println("Total call duration: "
getTotalMinutesCalled() + " mins.");

In her next edit, Benita focuses her attention not on line 64 but on the
previous line, which she had already freed of syntax errors. We are not sure
if she did not read the error message closely and mistakenly thought that line
was not fixed properly, or if she was not satisfied with her solution even if the
compiler was. In any case, Benita made the following change, which proves to
be extremely interesting

64 System.out.print("Credits left: ");
65 System.out.printf("creditsLeft = P%5.2f \n",

getLoadLeft());

With this edit, Benita has largely separated the task of string concatenation
away from the task of formatting a decimal output. We note that in this version
she does print a literal label for "Credits left" twice, but we’ll see that this
works itself out over time.

After this change, she moves on to fix the missing + in the "Total call
duration" line. Her new printSummary method now looks like

61 public void printSummary()
62 {
63
64 System.out.print("Credits left: ");
65 System.out.printf("creditsLeft = P%5.2f \n",

getLoadLeft());
66 System.out.println("Total call duration: " +

getTotalMinutesCalled() + " mins.");
67 System.out.println("Rate per call: " +

callRate);
68 System.out.println(

"Number of text messages sent: " +
getNumTextMessages());

69 }

This compiles cleanly, so Benita conducts a quick run-time test. Achieving
the desired formatted output for creditsLeft, she proceeds to adjust the print
statement of her callRate variable in a similar fashion, since it also needs to
be printed to two decimal places. Again she splits the printing of labels and
output formatting over two lines.

14

67 System.out.print("Rate per call: ");
68 System.out.printf("callRate = P%5.2f \n",

callRate);

We are not sure why Benita deliberately inserts a literal label for callRate
twice, but perhaps it helps her track exactly what each line does. After test-
ing this version to make sure callRate prints correctly, she promptly removes
the repetitive labels in both callRate and creditsLeft statements. Her final
version of the printSummary method appears below

61 public void printSummary()
62 {
63
64 System.out.print("Credits left: ");
65 System.out.printf("P%5.2f \n",

getLoadLeft());
66 System.out.println("Total call duration: " +

getTotalMinutesCalled() + " mins.");
67 System.out.print("Rate per call: ");
68 System.out.printf("P%5.2f \n", callRate);
69 System.out.println(

"Number of text messages sent: " +
getNumTextMessages());

70 }

With a working version of printSummary completed, Benita has completed
a critical part of her work. After a relatively brief struggle with concatenation
and formatting, Benita has found (or perhaps stumbled upon) a solution which
works nicely. By splitting the tasks of printing quoted, literal text labels of
variables and printing the formatted versions of the variables themselves onto
multiple lines, we believe that Benita gained a number of advantages. Splitting
tasks onto multiple lines makes it easier to identify the actual cause of a syntax
error, since the compiler reports an error along with the corresponding line
number. When lines have less content, their broken pieces should be more
easily identified. Furthermore, splitting the tasks onto multiple lines may make
it easier to read and parse what each line does. We note that these advantages,
particularly the improved isolation of a problematic bit of code after an error
message, could become especially useful in the event of a non-literal error.

Perhaps equally notable along with Benita’s splitting tasks strategy is what
she does after achieving a working program. After thoroughly testing her code,
Benita proceeds to add an in-code comment to her MobilePhone class which
explains the execution flow of her main method. Commenting code is a pro-
gramming practice which is often under-used or entirely avoided by novices.
This, taken together with Benita’s easy handling of errors surrounding string
formatting suggest many things, but perhaps most obviously that this may not
be Benita’s first time programming in Java.

15

4.3 Cosme: Strategic, Almost

It would seem, looking at Benita’s MobilePhone session, that splitting the tasks
of printing and formatting across multiple lines is a boon to novice programmers.
But before we become too enamored with this strategy, we turn out attention to
a student session in which this approach did not provide much help. In coding
his MobilePhone, Cosme attempted to write code similar to Benita’s, but with
less success.

38 public void printSummary()
39 {
40 System.out.print("Credits left:");
41 System.out.printf("getLoadLeft = P % 5.2f",

getLoadLeft());
42 System.out.print("Total call duration:");
43 System.out.printf(

"getTotalMinutesCalled = P % 5.2f",
getTotalMinutesCalled());

44 System.out.println("Rate per call:" +
callRate);

45
46 }

The code looks nice at first glance and compiles cleanly. A quick run-time
test, however, is stopped short by an IllegalFormatConversionException.
Looking closely at Cosme’s work, we find the source of the problem lies in line
43.

43 System.out.printf(
"getTotalMinutesCalled = P % 5.2f",
getTotalMinutesCalled());

Cosme is attempting to format an integer, the return value of getTotalMinutesCalled,
as a real number with two decimal places, as specified by % 5.2f. Java refuses
to automatically convert between these types, and thus throws an exception.

In response, Cosme makes a few cursory edits to the literal strings involved,
such as adding line breaks and removing the space to make % 5.2f become
%5.2f. When these edits do not overcome Java’s refusal to convert between
numerical types, Cosme removes the formatting entirely from (now) line 42.
This removal is semantically correct, as it is both not required and entirely
unnecessary to format the output string of this integer. Cosme is left with

38 public void printSummary()
39 {
40 System.out.print("Credits left:");
41 System.out.printf("P %5.2f \n",

getLoadLeft());

16

42 System.out.println("Total call duration:" +
getTotalMinutesCalled());

43 System.out.println("Rate per call:" +
callRate);

44
45 }

After giving up on formatting totalMinutesCalled, Cosme ends his ses-
sion. We note that he was likely distracted rather than assisted by the splitting
tasks technique and ultimately failed to apply formatted output to the cor-
rect variable. We do not know if he ever got around to formatting the output
of callRate as required. And while his output strings are split similarly to
Benita’s, it may not have been as intentional on Cosme’s part as it was so
clearly when Benita divided the tasks of printing and formatting output in the
MobilePhone class.

5 Discussion

In our exploration of the data, we have discovered that many novice program-
mers wrestle with the task of printing out a well-labeled and formatted summary
of a numerical variable. Over 8% of all observed syntax errors and 100% of the
run-time exceptions observed in the first laboratory assignment can be traced
to this task. Furthermore, Adam’s vignette provides considerable evidence that
such errors can limit a student’s performance so severely that they may put in
hours of work only to give up before their assigned task is complete. However,
Benita’s experience in splitting the tasks of concatenation and formatting onto
multiple lines looks to be an effective strategy for helping novice programmers
avoid Adam’s predicament. Cosme’s example shows that the splitting tasks
strategy is by no means universally effective.

Overall, out of the 213 novice coding sessions available in the Ateneo study,
we identified only eight sessions which appeared to introduce the splitting tasks
strategy to overcome or avoid formatting errors. Five of these showed evidence
that students split up their tasks deliberately to overcome existing errors related
to formatting, while in the other three sessions the programmer deliberately
split tasks precisely at the first attempt to achieve formatted printing. This
latter group indicates that students are aware of the difficulties involved in
formatting and attempting to isolate and overcome potential problems from the
start through a divide-and-conquer approach. About 12 other sessions displayed
a splitting tasks approach from the very first compile, and it is unclear whether
these students might be anticipating and avoiding errors, following suggestions
from peers, copying code from peers, or acting on some other motivation. From
our reading of the data, it seems clear that classifying students cleanly into
groups that use strategy and those that do not is problematic.

Altogether, the small number of sessions showing evidence of strategic error
avoidance prevents a more systematic, quantitative analysis of this phenomenon.

17

We cannot make a statistical claim that a string-splitting strategy is widespread
or effective. Our qualitative reading of the data indicates that something inter-
esting is going on for some of our students, as they clearly are doing something
different from the rest of the cohort with respect to this particular problem.
From our reading of all of the students’ sessions, it is clear that format strings
are difficult for novice programmers, and a substantial source of run-time errors
(or, in this case, the source of all run-time errors) in their programs.

We wish to examine our subjects’ struggles through the lens of three recent
studies, all of which may provide insights both into the observed behavior as
well as future directions for study.

5.1 The quality of error messages

In their SIGCSE 2008 paper, Nienaltowski, Pedroni, and Meyer explore whether
the level of detail and presentation of error messages contribute significantly to
the success of novice programmers learning Java and Pascal[13]. Their tentative
findings indicate that more detailed messages do not seem to be any more helpful
to students when dealing with errors in their program than when the compiler
displays a short message and highlights the line containing the error. However,
given the small number of subjects across the two institutions participating in
the study, the authors were unable to assure the significance of their findings
in the majority of their hypotheses—a larger number of subjects and better
experimental controls may later reverse this finding.

Our observations of novice students at University of Kent and Ateneo de
Manila generally confirm Nienaltowski et al.’s notion that compiler error mes-
sages are not very helpful to novice programmers. This is best seen in the
difficulties novices have with identifying literal and non-literal errors, as our
walk through of Adam’s session illustrated. Adam’s struggle to identify and
correct the source of many of his syntax errors is not odd—from our data, we
can see that it is consistent with the behavior of the vast majority of his class-
mates. Coupled with the preliminary findings of Nienaltowski et al., we begin
to get a sense for why syntax errors persist across compilations, and how much
complexity we are asking our beginners to tackle in the first few weeks of learn-
ing to program. Given that many students spend the majority of their time
interacting with code that does not compile (a frustrating experience for any-
one, regardless of their level of experience), it would not be surprising if further
work by Nienaltowski et al. demonstrates that the length and level of detail
of syntax error messages does not significantly help beginners in their quest to
write correct code.

5.2 Error response speed

In the same work, Neinaltowski et al. report that students with more program-
ming experience tend to answer questions about syntax errors more quickly,
regardless of whether or not the response corrected the error. They did not ob-
serve coding behavior directly to obtain this result. Rather, students were asked

18

to observe an syntactically incorrect code fragment along with the correspond-
ing error message and identify the correct solution from a set of possibilities.
Based on timing of this questionnaire, the authors suggest that the more code
students write, the more likely they are to encounter an error similar to those
seen before and should therefore respond to the error more quickly.

We did not examine timing data based on different levels of student experi-
ence, so we cannot comment on the correlation between experience and response
time. However, we did directly measure the interval between receiving the error
message and the student’s next compilation action. This data provides insight
into the actual amount of time novice students spend attempting to resolve
syntax errors. In comparing the behavior of students both at the University of
Kent and Ateneo de Manila (Figure 2), we see that our students are recompiling
their code quickly. The majority of the observed compilations take place in less
than 30 seconds after the prior compilation.

For example, in Section 4.1 we looked closely at the sequence of errors that
arose as Adam worked through his code. We can simplify this vignette by simply
flagging each compilation as either ending in a syntax error (‘x’) or as being
syntactically correct (‘O’), and his interactions with the compiled code as either
ending in a normal exit from a method invocation (‘-’) or a run-time exception
(‘!’). Adam’s vignette, using this coding, looks like this:

123456789012345678901234567890123456790
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxO--!xO-!--O-!OOO-!xO-!O-!O--O--

The first 46 compilations in Adam’s efforts ended in a syntax error. In
terms of time spent between compilations (throwing away only one outlier at 11
minutes), the majority of these compilation intervals took less than a minute—
which does not represent a large amount of time for a student to consider an
error, make an edit, and compile their code again (Figure 3). It may be worth
extending our data collection framework to allow the investigation of whether
increased programming experience reduces the time spent revising and recom-
piling code, which would provide a live variant of the questionnaire delivered by
Neinaltowski et al.

5.3 From errors to debugging

Reflecting our findings through yet another pilot study, we consider the results
published by Murphy et al. at SIGCSE 2008. In “Debugging: The Good, the
Bad, and the Quirky — a Qualitative Analysis of Novices’ Strategies,” we are
presented with the results from the observations of 21 students engaged in the
process of debugging a program with one or more semantic errors[12]. We take
the authors’ gestalt findings regarding these 21 students (spread over 7 different
institutions) as a preliminary result, and we consider that result in the light of
our own readings of novice behavior as captured by our on-line protocols.

In identifying “good” behaviors, Murphy et al. focused on 12 productive
strategies that they felt the students consistently exhibited. In their pool of 21

19

Adam's Session

Seconds between compilations

%
 o

f c
om

pi
la

tio
ns

0 50 100 150 200 250

0
5

10
15

20
25

Figure 3: Distribution of time spent between compilations in Adam’s session.

subjects, a majority of them used tracing extensively. Some did this mentally,
both silently and think-aloud. External aids (like paper) were “rarely” used,
and nine students altered code to isolate a problem. “Alterations” include
commenting or uncommenting code and moving blocks of code around. We find
the notion of altering code to isolate errors fascinating, as it lies at the heart
of our observations regarding students and their attempt to deal with run-time
errors surrounding format strings.

From our observations, it appears that about 20 of our subjects broke large
format strings into multiple print statements. Close reading of their sessions
reveals that some took this route to overcome existing errors, some appeared to
anticipate problems by using this strategy as soon as they transitioned from raw
printing to formatted printing, and others appeared to code these multiple state-
ments from the beginning for unclear reasons. We believe that these first two
groups were acting intentionally — employing a strategy used by these students
to help get around or otherwise “figure out” the problems they were observing
in the compilation and execution of their programs. We note that our auto-
mated tools do not give us a lens into our subjects’ intent—we must infer that
based on their compilation histories only. This data gives us a coarse-grained
view of their programming behavior when interacting with the compiler, not
their affective or mental state. Nevertheless, our observations offer additional
support to those of Murphy et al. that novice programmers (and surely experts

20

too) sometimes alter code drammatically to isolate errors.
Murphy et al. also report that some students exhibit “tinkering,” or making

unproductive, seemingly arbitrary changes to their code. This includes com-
menting and uncommenting “suspicious” lines of code or pasting in code from
other sources in an attempt to solve their problem. We observe tinkering in
many of the compilation histories we read in our own study, such as Adam’s
inexplicable addition of the construction of a Ticket object inside the Ticket
class’ details() method.

Considering tinkering alongside other observed behavior, Murphy et al. re-
mark that “although students read the code, it was unclear how hard they tried
to understand it.” We would normally question this value-laden conclusion, but
between our own data and the initial findings of Nienaltowski et al., we are in-
clined to agree—students like Adam will press on even in the face of confusion
or a lack of understanding.

5.4 Toward strategies for “unsticking”

Both Nienaltowski’s and Murphy’s initial investigations indicate that some stu-
dents have begun to develop methods for overcoming problems while learning to
program. The feedback from the environment is apparently problematic in this
process for many students, but despite poor tools, some find ways of successfully
working around them. However, as reported in Murphy et al.’s work, as well as
in our own observations, the number of students who consistently demonstrate
this skill early in their programming career are relatively few and far between.

McCartney, Eckerdal, Moström, Sanders, and Zander interviewed 14 stu-
dents at six institutions who were in their final year of a degree in Computer
Science (or its local equivalent)[10]. These interviews focused on strategies that
these students had developed over the course of their studies for getting through
challenging programming exercises. From these interviews, they identified 35
distinct strategies which they distilled into 12 more abstract categories. Among
these concrete strategies are “break into parts,” “use incremental development,”
“get help,” and “be persistent/don’t stop.”

McCartney et al.’s work gives us some small insight into the strategies that
we have observed in our own data through the words of a small group of final-
year students. A few of our first-year students are clearly breaking their prob-
lematic string formatting code down into smaller pieces, although it does not
appear to be a statistically significant behavior.

We can say that amongst all of our subjects, it is likely that we are observ-
ing both students who seek help and those who “don’t stop,” pushing doggedly
through a difficult error despite apparent lack of understanding. Seeking help
might be inferred from a string of syntactic errors, a long pause between com-
pilations, and a correct solution (to their problem-of-the-moment) appearing.
However, our data indicates that students are more likely to attempt various
kinds of work-around strategies rather than seek help. This can include repeated
moving between different parts of the program, as we observed early in Adam’s
session, or rewriting problematic code fragments from scratch rather than de-

21

bugging, as Murphy et al. report. Unfortunately, unproductive tinkering is also
a common alternative to seeking help.

5.5 String Formatting is Hard

Each of these studies provides us with another lens on our own data—they
report behaviors of novice programmers that might help us better understand
our subjects’ behavior. All of these studies highlight the challenges faced by
novice programmers, and we feel ours most clearly illustrates the fact that string
formatting is hard. First-time programmers are faced with the task of learning
a language; giving them tasks that involve the embedding of a second language
within the first is clearly difficult for the beginner.

String formatting involves the highly specific coordination of many nontrivial
programming tasks, including string concatenation, format specification, and
either returning a function value or printing to the output console. Although
it may be appealing to present students with problems that include real-world
I/O challenges (such as printing monetary values to two decimal places), in
practice we have found that this meta-task is difficult for students, as Adam’s
struggle exemplifies. Forcing students to become familiar with the rather quirky
requirements of Java’s System.out.printf or String.format requires them
to learn what amounts to an entirely new language: the language of format
specification. Adding this burden to a student who is already struggling to
master the basics of programming does not appear to be a good idea. If a
novice programmer must perform some formatting, perhaps a better alternative
would be to introduce Java’s DecimalFormat class or other similar constructs.
Our recommendation would be to find more engaging activities for the beginner
to focus on that did not require students to think about the structure of both
their program and their output simultaneously.

6 Future work

We see three promising investigations that might follow on from this work. First,
we believe this kind of study highlights the confusion that exists for novices
regarding literal and non-literal compilation errors. Second, this may shed light
on the behaviors we have presented and our colleagues observed—that students
will “move on” or otherwise try and avoid a problem, often with poor results.
Third, we may be seeing a kind of “conditioned” behavior amongst our students,
where compiler error messages consistently alter programming behaviors in ways
that we know do not lead to learning or success.

6.1 Literal vs. Non-Literal Errors

The distinction between literal and non-literal syntax errors is difficult for be-
ginning programmers. String concatenation and parameter delimitation within

22

Adam’s string formatting task was never helped by any of the compiler’s er-
ror messages, which almost always read ’)’ expected. Furthermore, when
an actual parenthesis was expected, Adam responded as if the error were still
non-literal.

Lying is a common part of human relationships—we lie to present positive
pictures of ourselves, to minimize conflict—but it also damages relationships
and ultimately leads to mistrust[6]. Of course, a non-literal error message is not,
strictly speaking, a lie, as the compiler correctly fails according to the grammar
of the language. But it is often the case that responding literally to a syntax
error will not fix the error; in the case of ’;’ expected, as many as 50% have
been observed in similar data to be non-literal.2 For many novices, the idea that
the computer may report an error message which does not point the user in the
correct direction may run contradictory to their conceptions of how computers
(and, more specifically, compilers) work. Future investigations will continue our
exploration of non-literal errors in novice programming experiences, focusing on
the strategies by which students avoid or correctly diagnose these dissembling
errors.

6.2 “Moving On” From Errors

A common response of novice students toward a syntax error alert during compi-
lation is to simply “move on” from the highlighted problem and work on another
portion of the source code. This behavior was observed in many of the sessions
examined . At first glance, we might be inclined to view this negatively, assum-
ing that students are frustrated with a particular error in their code. However,
“moving on” may also allow students to revisit an error later on with fresh eyes
and be more likely to spot the problem. We are interested in using methods
that provide more access to the student and their thoughts; currently, we have
begun to employ observation protocols to investigate affect, but we have not yet
begun to look for connections between affect and their fine-grained compilation
behavior[14, 15].

6.3 Conditioned Error Response

One of the most interesting and unexpected outcomes of the vignettes prepared
was the apparently conditioned behavioral responses to compiler error messages
observed in Adam’s story. We do not believe we are over-reaching when we
say that this appears to be a classic case of behavioral conditioning. This
model may prove useful in helping instructors understand how a novice student
unfamiliar with the error diagnosis and repair process will respond to compiler
error messages. Our first step will be to revisit our data in search of other
examples of these apparently “conditioned” responses, so as to determine how
common (or rare) this phenomenon might be.

2Based on a reading of roughly 900 ’;’ expected errors from the University of Kent data
set.

23

7 Conclusion

We have conducted a qualitative exploration that begins to explore the inter-
action of compile-time and run-time behavior of students engaged in writing
their first programs in a university classroom setting. By reading through their
sessions, compile-by-compile and invocation-by-invocation, we have constructed
three representative vignettes that ground the reader in the complexity of the
data as well as provide a deep understanding of what students do when they
are struggling to write code that achieves a particular task. Qualitatively, it
is clear that some students approach these problems differently than many of
their peers, though incidences of strategic alteration of code to overcome or
avoid errors remain too varied and few to lend themselves to more systematic,
quantitative evaluation.

While much work remains to be done to understand how novices learn to
program, we feel confident recommending that format strings be avoided in the
first course in programming. Format strings are one language embedded within
another, and they are completely unchecked by the compiler. For this reason,
they are likely the source of many run-time errors. In this particular study,
errors regarding string formatting accounted for 100% of the run-time errors
encountered by students engaged in what would traditionally be assumed to be
a simple programming exercise.

8 Acknowledgements

At the University of Kent, we would like to acknowledge Poul Henriksen, Michael
Kölling, David Barnes, Ian Utting, and Sally Fincher for their support, and
the students who participated during the 2003–2004 and 2004-2005 offerings
of CO320. At the Ateneo de Manila University, the authors thank Christine
Amarra, Andrei Coronel, Jose Alfredo de Vera, Sheryl Lim, Ramon Francisco
Mejia, Jessica Sugay, Emily Tabanao, Dr. John Paul Vergara and the technical
and secretarial staff of the Ateneo de Manila’s Department of Information Sys-
tems and Computer Science for their assistance with this project. We thank the
Ateneo de Manila’s CS 21 A students, school year 2006–2007, for their participa-
tion. Finally, we thank the Department of Science and Technology’s Philippine
Council for Advanced Science and Technology Research and Development for
making this study possible by providing the grant entitled “Modeling Novice
Programmer Behaviors Through the Analysis of Logged Online Protocols.”

References

[1] David J. Barnes and Michael Kölling. Objects First with Java: A Practical
Introduction Using BlueJ. Prentice Hall, October 2002.

[2] Tzu-Yi Chen, Gary Lewandowski, Robert McCartney, Kate Sanders, and
Beth Simon. Commonsense computing: using student sorting abilities to

24

improve instruction. In SIGCSE ’07: Proceedings of the 38th SIGCSE
technical symposium on Computer science education, pages 276–280, New
York, NY, USA, 2007. ACM.

[3] Sally Fincher and Josh Tenenberg. Using theory to inform capacity-
building: Bootstrapping communities of practice in computer science edu-
cation research. Journal of Engineering Education, 95(4):265–278, October
2006.

[4] Matthew C. Jadud. An exploration of novice compilation behavior in BlueJ.
PhD thesis, University of Kent, May 2006.

[5] Matthew C. Jadud. Methods and tools for exploring novice compilation
behaviour. In ICER ’06: Proceedings of the 2006 international workshop
on Computing education research, pages 73–84, New York, NY, USA, 2006.
ACM.

[6] Lene Arnett Jensen, Jeffrey Jensen Arnett, S. Shirley Feldman, and Eliza-
beth Cauffman. The right to do wrong: Lying to parents among adolescents
and emerging adults. Journal of Youth and Adolescence, 33, 2004.

[7] Gary Lewandowski, Dennis J. Bouvier, Robert McCartney, Kate Sanders,
and Beth Simon. Commonsense computing (episode 3): concurrency and
concert tickets. In ICER ’07: Proceedings of the third international work-
shop on Computing education research, pages 133–144, New York, NY,
USA, 2007. ACM.

[8] Gary Lewandowski, Alicia Gutschow, Robert McCartney, Kate Sanders,
and Dermot Shinners-Kennedy. What novice programmers don’t know. In
ICER ’05: Proceedings of the 2005 international workshop on Computing
education research, pages 1–12, New York, NY, USA, 2005. ACM.

[9] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John
Hamer, Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate
Sanders, Otto Seppälä, Beth Simon, and Lynda Thomas. A multi-national
study of reading and tracing skills in novice programmers. In ITiCSE-WGR
’04: Working group reports from ITiCSE on Innovation and technology in
computer science education, pages 119–150, New York, NY, USA, 2004.
ACM.

[10] Robert McCartney, Anna Eckerdal, Jan Erik Mostrom, Kate Sanders, and
Carol Zander. Successful students’ strategies for getting unstuck. In ITiCSE
’07: Proceedings of the 12th annual SIGCSE conference on Innovation and
technology in computer science education, pages 156–160, New York, NY,
USA, 2007. ACM.

[11] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne
Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Ut-
ting, and Tadeusz Wilusz. A multi-national, multi-institutional study of

25

assessment of programming skills of first-year cs students. SIGCSE Bull.,
33(4):125–180, 2001.

[12] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. Debugging: the good, the bad, and the quirky
– a qualitative analysis of novices’ strategies. In SIGCSE ’08: Proceedings
of the 39th SIGCSE technical symposium on Computer science education,
pages 163–167, New York, NY, USA, 2008. ACM.

[13] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. Com-
piler error messages: what can help novices? In SIGCSE ’08: Proceedings
of the 39th SIGCSE technical symposium on Computer science education,
pages 168–172, New York, NY, USA, 2008. ACM.

[14] Ma. Mercedes T. Rodrigo, Ryan S. Baker, Matthew C. Jadud, Anna Chris-
tine M. Amarra, Thomas Dy, Maria Beatriz V. Espejo-Lahoz, Sheryl Ann L.
Lim, Sheila A.M.S. Pascua, Jessica O. Sugay, and Emily S. Tabanao. Af-
fective and behavioral predictors of novice programmer achievement. In
ITiCSE ’09: Proceedings of the 14th annual ACM SIGCSE conference on
Innovation and technology in computer science education, pages 156–160,
New York, NY, USA, 2009. ACM.

[15] Ma. Mercedes T. Rodrigo and Ryan S.J.d. Baker. Coarse-grained detection
of student frustration in an introductory programming course. In ICER ’09:
Proceedings of the fifth international workshop on Computing education
research workshop, pages 75–80, New York, NY, USA, 2009. ACM.

[16] Beth Simon, Tzu-Yi Chen, Gary Lewandowski, Robert McCartney, and
Kate Sanders. Commonsense computing: what students know before we
teach (episode 1: sorting). In ICER ’06: Proceedings of the 2006 interna-
tional workshop on Computing education research, pages 29–40, New York,
NY, USA, 2006. ACM.

[17] James C. Spohrer, Elliot Soloway, and Edgar Pope. Where the bugs are.
In CHI ’85: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 47–53, New York, NY, USA, 1985. ACM.

[18] James G. Spohrer and Elliot Soloway. Analyzing the high frequency bugs
in novice programs. In Papers presented at the first workshop on empirical
studies of programmers on Empirical studies of programmers, pages 230–
251, Norwood, NJ, USA, 1986. Ablex Publishing Corp.

[19] Emily S. Tabanao, Ma. Mercedes T. Rodrigo, and Matthew C. Jadud. Iden-
tifying at-risk novice java programmers through the analysis of online pro-
tocols. In Proceedings of the 8th Philippine Computing Science Congress,
Quezon City, Philippines, 2008. Computing Society of the Philippines.

[20] Robert K. Yin. Applications of Case Study Research Second Edition (Ap-
plied Social Research Methods Series Volume 34). Sage Publications, Inc,
December 2002.

26

