
Exploring the use of Android OS in CS2
Mark Goadrich and Jacob Jennings

Department of Mathematics and Computer Science
Centenary College of Louisiana

Shreveport, Louisiana 71104
Email: {mgoadric,jjenning}@centenary.edu

Matthew Jadud
Department of Computer Science

Allegheny College
Meadville, PA 16335

Email: matthew.c@jadud.com

Abstract—Smartphones are increasingly being used in class-
rooms, with a focus on either upper-level software engineering
and capstone projects with iOS or Android OS, or a lower-
level introduction with AppInventor. Our work Android4CS2
provides tools for introducing Android in the middle ground of
CS2 courses on data structures and algorithms. Android’s basis
in Java enables us to leverage the Model-View-Controller pattern
as part of a motivating course paradigm of mobile development
without disrupting standard course topics. We believe that
structuring a CS2 course within the Android framework will
motivate students to not only gain a solid understanding of data
structures, but also to appreciate sound software engineering
principles.

I. INTRODUCTION

Our goal is to explore the use of Android-based mobile
devices for motivating student learning regarding data struc-
tures and algorithms—material traditionally referred to as CS2
in the computer science education community. Specifically,
we have developed a series of programming projects for use
on Android-based devices that allow students to focus on
developing core data structures first and then integrating the
details of the interface and user interaction.

Our use of Android in the classroom aims to strike a
balance between approaches that might be used when teaching
novice programmers such as AppInventor [1] or students that
are in an upper-division, special-topics course on ubiquitous
computing [2]. We are interested in reaching students who
have introductory knowledge of a programming language
and are on the verge of tackling large software engineering
projects. Our goal is to provide these students with a “loosely
sandboxed” environment where they can focus on material
core to the study of data structures and algorithms while simul-
taneously creating opportunities for creative exploration above
and beyond the material presented in any given laboratory or
homework assignment.

A. Leveraging Games

At our respective institutions, we currently make use of
Drake’s Data Structures and Algorithms in Java [3]. While this
text is fairly traditional in its structure, covering stacks, queues,
linked structures, trees, hash tables, etc, Drake motivates all
of his programming exercises through simple board and card
games. Chapter one introduces students to an abstraction for a
Die, and proceeds to implement Beetle, a game where players
race to assemble a six-legged insect. Games like Reversi

motivate the use of matrices, while various card games such
as War and Go Fish demonstrate the use of stacks, queues,
and linked lists.

We have found that students react well to this text, not nec-
essarily because they are programming games [4], but moreso
because they understand the problems clearly. Students can use
dice, cards and playing pieces to trace their code; having an
intuitive understanding of how the program should work makes
it much easier for them to design their programs. The games
also provide a social context for discussing programming,
where it is very rewarding for students to play the result of a
programming assignment with a partner.

B. Leveraging Mobility

Mobile devices provide an additional benefit: students can
easily share their work. Often, students of computing are hard
pressed to share their efforts with classmates and family. Now,
instead of asking, “What do I have to do to get this to run on
my own phone,” students quickly shift to wondering “How do
I make it so I can shake my phone to roll the die?” While this
may be a challenging question before the topic of interfaces
has even been broached, we believe devices that students use
and relate to on a daily basis have the potential to be incredibly
motivating in an intrinsic sense [5].

An added benefit of Android development is the clear
motivation for the exploration of the Eclipse IDE. In many
departments, decisions regarding tools (e.g., BlueJ vs. Eclipse
vs. command-line), and when to switch between them can
be a contentious decision that is difficult to motivate for both
faculty and students. The fact that Eclipse is the tool of choice
for Android development provides a simple, honest motivation
to help students overcome the relatively small frustrations of
learning a new tool.

II. PREPARATION AND PLANNING

The use of new curricular technology (e.g., robots, phones
or Arduinos) requires additional planning and infrastructure on
the part of the instructor. First and foremost, a course based
on mobile phones must make the phones available to students,
and the phones need to be charged and ready for use in-class,
during laboratory periods, and outside of class. We know from
the literature that courses based on technology with limited
accessibility can negatively impact both learning and student’s
reactions to the course [6].

Fig. 1. Idiot’s Delight Android application

Having used Drake’s text previously, Android with its
reliance on the Java programming language was a natural
choice for our integration of data structures and algorithms
in a mobile context. While the mobile device provides a
motivational context and room for advanced students to ex-
plore, our courses are fundamentally about data structures and
algorithms. For this reason, we set out to develop applications
based on Drake’s use of games that clearly separated the
study and implementation of structure from the mechanics of
implementing software on the Android platform.

Planning began during the summer of 2010, and in fall
2010 the second author undertook the implementation of 10
“wrappers” for examples from Drake’s text, one of which is
detailed in Section III. Each of these wrappers are translations
of Drake’s games into the Model-View-Controller paradigm,
where the interface and user interaction elements (the View
and Controller) are separated out from the underlying data
structures (the Model). We intentionally leave out the Model
portion of the application, as this is the code we want our
students to write as part of their assignments. We have licensed
these wrappers under the GPL and made them available at
http://android4cs2.googlecode.com/.

Too often, motivating technologies become an afterthought
that students begin to see as a burden. While these wrappers
are usable outside of the context of Drake’s text, we did not
need to make any large curricular changes to our course to
accommodate the use of our Motorola Droids. In our courses,
students can continue to use their text as a core resource while
working on developing structures to support the execution of
programs on a mobile device.

III. EXPLORING STACKS: IDIOT’S DELIGHT

A sample wrapper that illustrates our approach is Idiot’s
Delight, a solitaire card game. A screenshot of our application
can be seen in Figure 1. From the student’s point of view, this
game has three fundamental abstractions: the Card, the Deck
of undealt cards, and four Stacks. These abstractions form
the core of the Model for this application.

In the text, students are introduced to the Stack interface
(push(), pop(), peek(), and isEmpty()), and are
asked to provide a stack implementation that leverages arrays
in the form of a class called ArrayStack, or one with nodes
called ListStack.

Fig. 2. Decomposition of Idiot’s Delight for Android

Our Android implementation cleanly separates the MVC
pattern into the class IdiotsDelightActivity (the Con-
troller) and two classes implementing Views (CardView
and DeckView), shown in Figure 2. This allows students
to concentrate more precisely on the Model portion of the
code within our course, while instructors can then assist the
students as they integrate their data structures into the larger
application. This also makes the motivation for discussing
interfaces and layers of abstraction clearly relevant, as they
are able to see their code working seamlessly within these
wrappers with only the interface to guide the interactions
between the Model, View, and Controller.

After gaining familiarity with the necessary data structures,
interested students can revisit each assignment with a focus
on understanding the Android wrapper itself. An instructor
can highlight how Android projects are built using the same
abstractions of interfaces and inheritance the students are
learning in class.

IV. CONCLUSIONS AND FUTURE WORK

Android4CS2 is currently being piloted in Spring 2011,
where we will be evaluating our initial explorations in this
space through combination of student journals and surveys,
along with outcome assessments based on student retention
and course evaluations. We believe this combination of mobile
device and games will facilitate a deeper understanding in the
students of the CS2 course topics. While the pace of the course
has been slower than previous years due to the additional
Android content, we have already experienced a number of
benefits from this approach, including our expected increase
in student motivation and exploration.

While our above applications make use of Drake’s text,
we are currently implementing separate assignments that can
highlight the intrinsic sensors of mobile phones such as the
GPS, accelerometer and compass. We plan to augment these
with exercises from other textbooks as well as assignment
repositories such as the SIGCSE Nifty Assignments website
at http://nifty.stanford.edu/. In addition, we are exploring the
use of these applications beyond the CS2 course as a tutorial
on Android programming, where students would implement
and alter the Views and Controller classes for this familiar set
of Models.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments, their current students enrolled in
the pilot courses, and Google for the support of Motorola
Droids for the classroom through an Android Education Grant.

REFERENCES

[1] D. Wolber, “App inventor and real-world motivation,” in Proceedings of
the 42nd ACM technical symposium on Computer science education,
ser. SIGCSE ’11. New York, NY, USA: ACM, 2011, pp. 601–606.
[Online]. Available: http://doi.acm.org/10.1145/1953163.1953329

[2] J. B. Fenwick, Jr., B. L. Kurtz, and J. Hollingsworth, “Teaching
mobile computing and developing software to support computer
science education,” in Proceedings of the 42nd ACM technical
symposium on Computer science education, ser. SIGCSE ’11. New
York, NY, USA: ACM, 2011, pp. 589–594. [Online]. Available:
http://doi.acm.org/10.1145/1953163.1953327

[3] P. Drake, Data Structures and Algorithms in Java. Pearson Education,
2006.

[4] N. Whitton, “Motivation and computer game based learning,” in Proceed-
ings of ASCIILITE, 2007.

[5] M. Apiola, M. Lattu, and T. A. Pasanen, “Creativity and intrinsic
motivation in computer science education: experimenting with robots,”
in Proceedings of the fifteenth annual conference on Innovation and
technology in computer science education, ser. ITiCSE ’10. New
York, NY, USA: ACM, 2010, pp. 199–203. [Online]. Available:
http://doi.acm.org/10.1145/1822090.1822147

[6] B. Fagin and L. Merkle, “Measuring the effectiveness of robots
in teaching computer science,” in Proceedings of the 34th SIGCSE
technical symposium on Computer science education, ser. SIGCSE ’03.
New York, NY, USA: ACM, 2003, pp. 307–311. [Online]. Available:
http://doi.acm.org/10.1145/611892.611994

