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ABSTRACT 

We study which observable affective states and behaviors relate to 

students’ achievement within a CS1 programming course. To this 

end, we use a combination of human observation, midterm test 

scores, and logs of student interactions with the compiler within 

an Integrated Development Environment (IDE).  We find that 

confusion, boredom and engagement in IDE-related on-task 

conversation are associated with lower achievement.  We find that 

a student’s midterm score can be tractably predicted with simple 

measures such as the student’s average number of errors, number 

of pairs of compilations in error, number pairs of compilations 

with the same error, pairs of compilations with the same edit 

location and pairs of compilations with the same error location. 

This creates the potential to respond to evidence that a student is 

at-risk for poor performance before they have even completed a 

programming assignment.   
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1. INTRODUCTION  
Negative affect and behaviors have a powerful influence on 

novice programmers’ learning [7, 11].  Students respond to bugs 

in a variety of ways, including non-constructive behaviors such as 

disengaging from the task by giving up or by attempting to fix 

bugs by guessing or by systematically applying code they have 

seen previously, regardless of is original context.  When students 

perceive bugs as a valuation of their personal competence, rather 

than responding with the goal of mastering programming, their 

mistakes discourage them and can cause them to give up on 

programming [17].   

Since at least the 1980s, computer science education researchers 

have searched for ways for computer science teachers can better 

support their students.  Approaches include the study of common 

errors [cf. 14] and vignettes of student bugs to gain insight into 

student problem-solving processes [cf. 19]. Still, it is often a 

challenge for computer science educators to recognize indicators 

of diminishing performance and help students overcome learning 

problems. Given the spectrum of possible ways that a student can 

react to difficulties (both affective and behavioral), it is important 

for educators to know to which behaviors and emotions they 

should be most attuned. Which behaviors and emotions are most 

associated with novice programming students’ eventual 

achievement?   

There have been a variety of answers obtained through qualitative 

examination, including that programmer boredom and resentment 

should be mitigated [16], student motivation and initiative should 

be nurtured [9], and that negative emotions such as anger should 

be kept under control [12]. However, qualitative evidence of this 

nature only tells us that a problem exists – it does not tell us 

which problems are most important. 

Recent studies have attempted to tease out these factors more 

quantitatively.  Perfectionism and self-esteem have been found to 

be positive predictors of novice programmer learning while 

emotional health and social well-being have not [2]. Disliking 

programming appears to be associated with lower success in early 

programming courses [7]. High states of arousal such as delight or 

fear tend to improve programming performance [10].   



Some studies suggest that it may be possible to automatically 

detect programming students’ emotions, as well as other factors 

that lead to differences in achievement. [10] proposes that it may 

be possible to detect moods from programmer uses of the 

keyboard or mouse but has not published experimental results as 

of the time of this writing.  [13, 15] have shown that there is a 

measurable relationship between students’ compilation behaviors 

and their achievement levels, which are discussed in greater detail 

in the following section.   

2. RESEARCH QUESTIONS  
This study attempts to answer two main questions.  First, which 

observable affective states and behaviors can predict each 

student’s degree of achievement?  Studies have shown that, in 

computer literacy learning, confusion significantly predicted post-

test scores [8].  Learning outcomes in computer literacy also 

negatively correlates with boredom and positively with flow [8]. 

Behaviors such as gaming the system, e.g. systematic guessing or 

hint abuse, can result in poor learning in math [cf. 1]. We ask 

whether these and other such constructs can predict learning 

among novice programmers.  

Second, which automatically distillable measures can predict 

achievement?  Jadud  defines a construct called an Error Quotient 

(EQ) [13]. EQ is a metric that determines how well or how poorly 

students cope with syntax errors.  It is based on the number of 

pairs of compilations that end in errors, the number of pairs of 

compilations that end in the same error type, the number of pairs 

of compilations with the same error location, and the number of 

pairs of compilations with the same edit location. 

In [20], it was shown that EQ correlates with achievement.  

Given, though, that EQ is a composite of several measures, and 

the weights on each measure in [13] are somewhat arbitrary, we 

disaggregate EQ to determine which of these metrics is most 

predictive of achievement. 

Note that we do not attempt to use the automatic measures of 

student behavior to predict their affect. Instead, we use both 

automatic and observational measures when attempting to predict 

learning outcomes. Each type of measure is feasible for instructors 

to obtain. For example, teaching assistants could observe lab 

sessions to identify when students experience affective states 

found to be associated with poorer learning outcomes. The goal of 

this study is to determine which factors instructors should look for 

to inform early response to at-risk students.   

3. METHODS 
This study was conducted with Computer Science freshmen and 

Management Information Systems sophomores at the Ateneo de 

Manila University, during the first semester of school year 2007-

2008. The students were taking their first collegiate programming 

course, CS 21 A, Introduction to Computing, generally called 

CS1 in the computer science education literature.  There were five 

sections of CS 21 A during this semester, with a total of 146 

students. Although the teachers for each section varied, the 

textbook, slides, examples, exercises, midterm exam, final exam, 

and programming projects were uniform.   

The programming language used in the course was Java.  During 

the first half of the semester, the students used the BlueJ  

Integrated Development Environment (IDE). During the second 

half of the semester, they shifted to JCreator.  

At the beginning of the semester, all students were informed of 

the study and its purpose. They were then given a form in which 

they gave or denied consent to participate in the study.  Of the 146 

students, 143 agreed to participate. Of these 143, 10 were 

randomly selected from each section (50 total) for behavior and 

affect observation.  

The CS 21 A classes completed hands-on programming exercises 

in computer laboratories with one-to-one student-to-computer 

ratios.  The lab sessions were part of regularly scheduled class 

time and were graded, so all students were expected to be present.  

Each student was assigned a permanent seat and computer for the 

semester.  Over the first nine weeks of the semester, the students 

were asked to write five small programs. These exercises helped 

students practice what had been discussed during earlier lectures, 

e.g. how to write conditional statements, how to create multiple 

constructors, how to create object associations or aggregations, 

and so on. All sections were give the same set of laboratory 

exercises.  Each lab period lasted 50 minutes.  During these lab 

periods, students were free to consult their books, notes, slides, 

classmates and the teacher. 

3.1 Logging of online protocols 
As the students completed these programming exercises, a BlueJ 

extension sent data about each student compilation to a SQLite 

database running in the background.  The saved data included (but 

were not limited to) the computer number, time stamp, error 

message (if any), file name, and source code in compilation 

A single student record for a particular lab was composed of many 

compilations. This collection of all programs submitted to the 

compiler is known as an online protocol [15]. Data was only 

retained for students who consented to participate in the study.  

3.2 Observation method 
During each lab period, two trained observers noted each 

student’s affective state and behavior, based on previously 

validated methods for behavior and affect observation in 

classroom settings [e.g. 1, 18].   The observers were taken from a 

pool of five students currently taking their master’s degrees in 

either Computer Science or Education. Each of these observers 

had teaching experience.   

During each lab period, two observers studied the same 10 

students per section, in a pre-chosen order. They did not tell the 

students who the 10 observed students were. During the lab 

period, the observers surreptitiously looked at one specific student 

at a time. They noted facial expressions, body language, 

utterances, and interactions with the computer, fellow students or 

teacher.  They also wandered around the classroom, watching the 

current student from a distance.  Since the entire class occupied 

the lab during the lab period, it was fairly easy to disguise who 

exactly the observers were watching and at what time.  After 20 

seconds, the observers shifted their attention to the next student.  

The observers recorded 15 observations per student per period. 

The observers then coded one affective state and one behavior for 

that student for that time period. The affective states coded were 

taken from [5, 18]; examples of student behavior when 

experiencing each of these affective states are given below:   



1. Boredom – slouching and resting the chin on his/her 

palm; statements such as “This is boring!” 

2. Confusion –scratching his/her head, repeatedly looking 

at the same interface elements; consulting with a 

classmate or a teacher; flipping through lecture slides or 

notes; statements such as “Why didn’t it work?” 

3. Delight –clapping hands or laughing with pleasure; 

statements such as “Yes!” or “I got it!” 

4. Surprise –jerking back suddenly or gasping; statements 

such as “Huh?” or “Oh, no!” 

5. Frustration –banging on the keyboard or pulling at 

his/her hair; cursing; statements such as “What’s going 

on?!?”  

6. Flow – complete immersion and focus upon the system 

[4]; behaviors such as leaning towards the computer or 

mouthing solutions to him/herself while solving a 

problem.  

7. The Neutral state, which was coded when the student 

did not appear to be displaying any of the affective 

states above, or the student’s affect could not be 

determined for certain. 

The behavioral states coded were taken from [1, 18] and described 

as follows: 

1. On-task – working on the programming task 

2. On-task conversation: domain and problem-focused 

– helping or asking for help from the instructor or 

another student about the program specifications or a 

Java construct 

3. IDE-related on-task conversation - helping or asking 

for help from the instructor or another student about the 

IDE  

4. Off-task conversation – talking about any other topic  

5. Off-task solitary behavior – behavior that did not 

involve the programming task or another person (such 

as surfing the web, blogging or checking a cell phone) 

6. Inactivity – the student stares into space or puts his/her 

head down on the desk. 

7. Gaming the System [cf. 1] – sustained and/or 

systematic guessing, such as rapid-fire compiling 

without consulting the error messages; repeatedly 

requesting help in order to arrive at a solution 

For tractability, observers coded only the first observed affective 

state and behavior per student per time slice. After 20 seconds, the 

observers moved on to the next student. After the 10th student, the 

observers returned to the first. The observers gathered 15 affect 

and 15 behavior observations per student per lab period.  

After observations for all five lab sessions were gathered, inter-

rater reliability was computed.  It was acceptably high with 

Cohen’s [3] ĸ=0.65 for affect and ĸ=0.75 for behavior. 

3.3 Data pre-processing 
Once the data had been gathered, it was pre-processed for 

analysis.  For each study participant, all compilation records not 

related to the lab exercise were deleted.  Students whose 

observation or online protocol records were incomplete because 

of absences or technical problems were also deleted from the 

dataset.  After all the deletions, the sample was reduced to 40 

students.  Twenty-seven were male and 13 were female. 

For each of these students, we constructed a record with the 

student’s section, computer number, midterm exam grade, an 

affective profile, an observed behavior profile, and a compilation 

profile.  The students’ midterm exam grades were used instead of 

the final exam grades because the labs and observations took 

place during the first half of the semester.  

To arrive at the affective and observed behavior profiles of each 

student, we first computed for the percentage of observations in 

which each student exhibited an affective state or behavior for 

each lab period [cf. 1].  We then averaged the student’s 

percentages per affective state or behavior across the five labs.    

The student’s compilation profile was drawn from his or her 

online protocols. We computed for the total number of errors, 

number of compilations, and average number of seconds between 

compilations per student per lab.  As mentioned earlier, we 

disaggregated the EQ construct, so that for each student for each 

lab, we computed number of pairs of compilations in error, 

number of pairs of compilations with the same error, number of 

pairs of consecutive compilations with the same edit location, and 

number of pairs of consecutive compilations with the same edit 

location. All these measures were then averaged across all five 

labs. 

4. RESULTS AND DISCUSSION 
We performed a linear regression using each affective state, 

behavior, and automatically distillable measure independently, to 

determine whether any of these were predictors of achievement as 

represented by students’ scores on the midterm exam.  

From Table 1, Flow was positively related to achievement. 

Boredom and confusion are negatively related to achievement.  

Delight, surprise, frustration and neutrality were not predictors of 

achievement. 

Two backwards elimination stepwise regressions [6] were 

performed on the significant observed factors, in order to develop 

the fullest possible model predicting student achievement. The 

first was performed on the observations.  We began with the five 

factors: confusion, boredom, flow, on-task, and IDE-related on-

task conversation.  With each iteration, we then eliminated the 

individual factor that was least significant until all factors in the 

model were statistically significantly associated with achievement, 

even taking the other factors into account.  Two factors were 

eliminated: flow and on-task.  The remaining three factors—

confusion, boredom, and IDE_related on-task conversation—

resulted in a model which accounts for about one-third of the 

variance in midterm scores (R2=0.347).  

 

 



Table 1. Linear regression results; significant findings in dark 

grey, marginally significant findings in light grey 

Factors ß R Significance 

Affective states 

Confusion -82.452 0.432 F(1,38)=8.755 

p=0.005 

Boredom -612.570 0.389 F(1,38)=6.782 

p=0.013 

Delight -15.535 0.032 F(1,38)=7.933 

p=0.846 

Surprise 55.989 0.000 F(1,38)=0.006 

p=0.939 

Flow 49.892 0.346 F(1,38)=0.120 

p=0.028 

Frustration -140.337 0.195 F(1,38)=1.485 

p=0.231 

Neutral 14.694 0.084 F(1,38)=0.251 

p=0.619 

Behaviors 

On-task 34.294 0.257 F(1,38)=2.707 

p=0.108 

Giving and 

receiving 

answers 

-108.421 0.221 F(1,38)=1.975 

p=0.168 

IDE-related 

on-task 

conversation 

-55.860 0.316 F(1,38)=4.239 

p=0.046 

Off-task 

conversation 

101.338 0.130 F(1,38)=0.651 

p=0.425 

Off-task 

solitary  

88.071 0.245 F(1,38)=2.442 

p=0.126 

Inactivity -28.154 0.122 F(1,38)=0.561 

p=0.458 

Gaming the 

system 

-481.503 0.130 F(1,38)=0.655 

p=0.423 

Automatically distillable measures 

Ave. number 

of errors 

-0.255 0.277 F(1,38)=3.148 

p=0.084 

Average 

number of 

compilations 

-0.175 0.245 F(1,38)=2.437 

p=0.127 

Ave. number 

of seconds 

between 

compilations 

0.028 0.055 F(1,38)=0.115 

p=0.736 

Pairs of 

compilations 

in error 

-0.378 0.326 F(1,38)=4.529 

p=0.040 

Pairs of 

compilations 

with same 

error 

-0.637 0.303 F(1,38)=3.859 

p=0.057 

Pairs of 

compilations 

with the same 

error location 

-0.562 0.298 F(1,38)=3.700 

p=0.062 

Pairs of 

compilations 

with the same 

edit location 

-0.666 0.336 F(1,38)=4.822 

p=0.034 

The same process applied on the automatically distillable 

measures produced a model with two factors, Pairs of 

Compilations with the Same Edit Location and Pairs of 

Compilations with the Same Error Location.  However, the 

predictive power of the model was relatively low (R2=0.120), and 

The model as a whole was only marginally significant  

(F(2,37)=2.524; p=0.094).  

In addition, a model combining all five factors is not 

significantly better than the model with just confusion, boredom, 

and IDE-related on-task conversation.   

5. CONCLUSION 
In this paper, we asked which observable affective states and 

behaviors and which automatically distillable measures can be 

used to predict student achievement in CS1 courses. Based on this 

study, we find that students who are confused, bored, or engaged 

in IDE-related on-task conversation will most probably do less 

well in the midterm exams.  We also found that automatically 

distillable measures such as average number of errors, pairs of 

compilations in error, pairs of compilations with the same error, 

pairs of compilations with the same edit location and pairs of 

compilations with the same error location may also be useful in 

identifying students having academic difficulty.  Future work may 

include a finer-grained analysis of the tractable behaviors 

associated with successful or unsuccessful students. 
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