
Affective and Behavioral Predictors of Novice Programmer

Achievement
Ma. Mercedes T. Rodrigo

1

mrodrigo@ateneo.edu

Anna Christine M. Amarra
1

camarra@ateneo.edu

Sheryl Ann L. Lim
1

lim.she@gmail.com

Ryan S. Baker
2

rsbaker@cs.cmu.edu

Thomas Dy

1

alpha8888_2@yahoo.com

Sheila A. M. S. Pascua

4

sspascua@gmail.com

Emily S. Tabanao
1,5

emilytabanao@yahoo.com

Matthew C. Jadud
3

matthew.c@jadud.com

Maria Beatriz V. Espejo-Lahoz
1

blahoz@ateneo.edu

Jessica O. Sugay
1,4

jsugay@ateneo.edu

ABSTRACT

We study which observable affective states and behaviors relate to

students’ achievement within a CS1 programming course. To this

end, we use a combination of human observation, midterm test

scores, and logs of student interactions with the compiler within

an Integrated Development Environment (IDE). We find that

confusion, boredom and engagement in IDE-related on-task

conversation are associated with lower achievement. We find that

a student’s midterm score can be tractably predicted with simple

measures such as the student’s average number of errors, number

of pairs of compilations in error, number pairs of compilations

with the same error, pairs of compilations with the same edit

location and pairs of compilations with the same error location.

This creates the potential to respond to evidence that a student is

at-risk for poor performance before they have even completed a

programming assignment.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:

Computer Science Education

General Terms
Human Factors

Keywords
Novice Programmers, Affect, Achievement

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

ITiCSE’09, July 6–9, 2009, Paris, France.

Copyright 2009 ACM 978-1-60558-381-5/09/07...$5.00.

1. INTRODUCTION
Negative affect and behaviors have a powerful influence on

novice programmers’ learning [7, 11]. Students respond to bugs

in a variety of ways, including non-constructive behaviors such as

disengaging from the task by giving up or by attempting to fix

bugs by guessing or by systematically applying code they have

seen previously, regardless of is original context. When students

perceive bugs as a valuation of their personal competence, rather

than responding with the goal of mastering programming, their

mistakes discourage them and can cause them to give up on

programming [17].

Since at least the 1980s, computer science education researchers

have searched for ways for computer science teachers can better

support their students. Approaches include the study of common

errors [cf. 14] and vignettes of student bugs to gain insight into

student problem-solving processes [cf. 19]. Still, it is often a

challenge for computer science educators to recognize indicators

of diminishing performance and help students overcome learning

problems. Given the spectrum of possible ways that a student can

react to difficulties (both affective and behavioral), it is important

for educators to know to which behaviors and emotions they

should be most attuned. Which behaviors and emotions are most

associated with novice programming students’ eventual

achievement?

There have been a variety of answers obtained through qualitative

examination, including that programmer boredom and resentment

should be mitigated [16], student motivation and initiative should

be nurtured [9], and that negative emotions such as anger should

be kept under control [12]. However, qualitative evidence of this

nature only tells us that a problem exists – it does not tell us

which problems are most important.

Recent studies have attempted to tease out these factors more

quantitatively. Perfectionism and self-esteem have been found to

be positive predictors of novice programmer learning while

emotional health and social well-being have not [2]. Disliking

programming appears to be associated with lower success in early

programming courses [7]. High states of arousal such as delight or

fear tend to improve programming performance [10].

Some studies suggest that it may be possible to automatically

detect programming students’ emotions, as well as other factors

that lead to differences in achievement. [10] proposes that it may

be possible to detect moods from programmer uses of the

keyboard or mouse but has not published experimental results as

of the time of this writing. [13, 15] have shown that there is a

measurable relationship between students’ compilation behaviors

and their achievement levels, which are discussed in greater detail

in the following section.

2. RESEARCH QUESTIONS
This study attempts to answer two main questions. First, which

observable affective states and behaviors can predict each

student’s degree of achievement? Studies have shown that, in

computer literacy learning, confusion significantly predicted post-

test scores [8]. Learning outcomes in computer literacy also

negatively correlates with boredom and positively with flow [8].

Behaviors such as gaming the system, e.g. systematic guessing or

hint abuse, can result in poor learning in math [cf. 1]. We ask

whether these and other such constructs can predict learning

among novice programmers.

Second, which automatically distillable measures can predict

achievement? Jadud defines a construct called an Error Quotient

(EQ) [13]. EQ is a metric that determines how well or how poorly

students cope with syntax errors. It is based on the number of

pairs of compilations that end in errors, the number of pairs of

compilations that end in the same error type, the number of pairs

of compilations with the same error location, and the number of

pairs of compilations with the same edit location.

In [20], it was shown that EQ correlates with achievement.

Given, though, that EQ is a composite of several measures, and

the weights on each measure in [13] are somewhat arbitrary, we

disaggregate EQ to determine which of these metrics is most

predictive of achievement.

Note that we do not attempt to use the automatic measures of

student behavior to predict their affect. Instead, we use both

automatic and observational measures when attempting to predict

learning outcomes. Each type of measure is feasible for instructors

to obtain. For example, teaching assistants could observe lab

sessions to identify when students experience affective states

found to be associated with poorer learning outcomes. The goal of

this study is to determine which factors instructors should look for

to inform early response to at-risk students.

3. METHODS
This study was conducted with Computer Science freshmen and

Management Information Systems sophomores at the Ateneo de

Manila University, during the first semester of school year 2007-

2008. The students were taking their first collegiate programming

course, CS 21 A, Introduction to Computing, generally called

CS1 in the computer science education literature. There were five

sections of CS 21 A during this semester, with a total of 146

students. Although the teachers for each section varied, the

textbook, slides, examples, exercises, midterm exam, final exam,

and programming projects were uniform.

The programming language used in the course was Java. During

the first half of the semester, the students used the BlueJ

Integrated Development Environment (IDE). During the second

half of the semester, they shifted to JCreator.

At the beginning of the semester, all students were informed of

the study and its purpose. They were then given a form in which

they gave or denied consent to participate in the study. Of the 146

students, 143 agreed to participate. Of these 143, 10 were

randomly selected from each section (50 total) for behavior and

affect observation.

The CS 21 A classes completed hands-on programming exercises

in computer laboratories with one-to-one student-to-computer

ratios. The lab sessions were part of regularly scheduled class

time and were graded, so all students were expected to be present.

Each student was assigned a permanent seat and computer for the

semester. Over the first nine weeks of the semester, the students

were asked to write five small programs. These exercises helped

students practice what had been discussed during earlier lectures,

e.g. how to write conditional statements, how to create multiple

constructors, how to create object associations or aggregations,

and so on. All sections were give the same set of laboratory

exercises. Each lab period lasted 50 minutes. During these lab

periods, students were free to consult their books, notes, slides,

classmates and the teacher.

3.1 Logging of online protocols
As the students completed these programming exercises, a BlueJ

extension sent data about each student compilation to a SQLite

database running in the background. The saved data included (but

were not limited to) the computer number, time stamp, error

message (if any), file name, and source code in compilation

A single student record for a particular lab was composed of many

compilations. This collection of all programs submitted to the

compiler is known as an online protocol [15]. Data was only

retained for students who consented to participate in the study.

3.2 Observation method
During each lab period, two trained observers noted each

student’s affective state and behavior, based on previously

validated methods for behavior and affect observation in

classroom settings [e.g. 1, 18]. The observers were taken from a

pool of five students currently taking their master’s degrees in

either Computer Science or Education. Each of these observers

had teaching experience.

During each lab period, two observers studied the same 10

students per section, in a pre-chosen order. They did not tell the

students who the 10 observed students were. During the lab

period, the observers surreptitiously looked at one specific student

at a time. They noted facial expressions, body language,

utterances, and interactions with the computer, fellow students or

teacher. They also wandered around the classroom, watching the

current student from a distance. Since the entire class occupied

the lab during the lab period, it was fairly easy to disguise who

exactly the observers were watching and at what time. After 20

seconds, the observers shifted their attention to the next student.

The observers recorded 15 observations per student per period.

The observers then coded one affective state and one behavior for

that student for that time period. The affective states coded were

taken from [5, 18]; examples of student behavior when

experiencing each of these affective states are given below:

1. Boredom – slouching and resting the chin on his/her

palm; statements such as “This is boring!”

2. Confusion –scratching his/her head, repeatedly looking

at the same interface elements; consulting with a

classmate or a teacher; flipping through lecture slides or

notes; statements such as “Why didn’t it work?”

3. Delight –clapping hands or laughing with pleasure;

statements such as “Yes!” or “I got it!”

4. Surprise –jerking back suddenly or gasping; statements

such as “Huh?” or “Oh, no!”

5. Frustration –banging on the keyboard or pulling at

his/her hair; cursing; statements such as “What’s going

on?!?”

6. Flow – complete immersion and focus upon the system

[4]; behaviors such as leaning towards the computer or

mouthing solutions to him/herself while solving a

problem.

7. The Neutral state, which was coded when the student

did not appear to be displaying any of the affective

states above, or the student’s affect could not be

determined for certain.

The behavioral states coded were taken from [1, 18] and described

as follows:

1. On-task – working on the programming task

2. On-task conversation: domain and problem-focused

– helping or asking for help from the instructor or

another student about the program specifications or a

Java construct

3. IDE-related on-task conversation - helping or asking

for help from the instructor or another student about the

IDE

4. Off-task conversation – talking about any other topic

5. Off-task solitary behavior – behavior that did not

involve the programming task or another person (such

as surfing the web, blogging or checking a cell phone)

6. Inactivity – the student stares into space or puts his/her

head down on the desk.

7. Gaming the System [cf. 1] – sustained and/or

systematic guessing, such as rapid-fire compiling

without consulting the error messages; repeatedly

requesting help in order to arrive at a solution

For tractability, observers coded only the first observed affective

state and behavior per student per time slice. After 20 seconds, the

observers moved on to the next student. After the 10th student, the

observers returned to the first. The observers gathered 15 affect

and 15 behavior observations per student per lab period.

After observations for all five lab sessions were gathered, inter-

rater reliability was computed. It was acceptably high with

Cohen’s [3] ĸ=0.65 for affect and ĸ=0.75 for behavior.

3.3 Data pre-processing
Once the data had been gathered, it was pre-processed for

analysis. For each study participant, all compilation records not

related to the lab exercise were deleted. Students whose

observation or online protocol records were incomplete because

of absences or technical problems were also deleted from the

dataset. After all the deletions, the sample was reduced to 40

students. Twenty-seven were male and 13 were female.

For each of these students, we constructed a record with the

student’s section, computer number, midterm exam grade, an

affective profile, an observed behavior profile, and a compilation

profile. The students’ midterm exam grades were used instead of

the final exam grades because the labs and observations took

place during the first half of the semester.

To arrive at the affective and observed behavior profiles of each

student, we first computed for the percentage of observations in

which each student exhibited an affective state or behavior for

each lab period [cf. 1]. We then averaged the student’s

percentages per affective state or behavior across the five labs.

The student’s compilation profile was drawn from his or her

online protocols. We computed for the total number of errors,

number of compilations, and average number of seconds between

compilations per student per lab. As mentioned earlier, we

disaggregated the EQ construct, so that for each student for each

lab, we computed number of pairs of compilations in error,

number of pairs of compilations with the same error, number of

pairs of consecutive compilations with the same edit location, and

number of pairs of consecutive compilations with the same edit

location. All these measures were then averaged across all five

labs.

4. RESULTS AND DISCUSSION
We performed a linear regression using each affective state,

behavior, and automatically distillable measure independently, to

determine whether any of these were predictors of achievement as

represented by students’ scores on the midterm exam.

From Table 1, Flow was positively related to achievement.

Boredom and confusion are negatively related to achievement.

Delight, surprise, frustration and neutrality were not predictors of

achievement.

Two backwards elimination stepwise regressions [6] were

performed on the significant observed factors, in order to develop

the fullest possible model predicting student achievement. The

first was performed on the observations. We began with the five

factors: confusion, boredom, flow, on-task, and IDE-related on-

task conversation. With each iteration, we then eliminated the

individual factor that was least significant until all factors in the

model were statistically significantly associated with achievement,

even taking the other factors into account. Two factors were

eliminated: flow and on-task. The remaining three factors—

confusion, boredom, and IDE_related on-task conversation—

resulted in a model which accounts for about one-third of the

variance in midterm scores (R2=0.347).

Table 1. Linear regression results; significant findings in dark

grey, marginally significant findings in light grey

Factors ß R Significance

Affective states

Confusion -82.452 0.432 F(1,38)=8.755

p=0.005

Boredom -612.570 0.389 F(1,38)=6.782

p=0.013

Delight -15.535 0.032 F(1,38)=7.933

p=0.846

Surprise 55.989 0.000 F(1,38)=0.006

p=0.939

Flow 49.892 0.346 F(1,38)=0.120

p=0.028

Frustration -140.337 0.195 F(1,38)=1.485

p=0.231

Neutral 14.694 0.084 F(1,38)=0.251

p=0.619

Behaviors

On-task 34.294 0.257 F(1,38)=2.707

p=0.108

Giving and

receiving

answers

-108.421 0.221 F(1,38)=1.975

p=0.168

IDE-related

on-task

conversation

-55.860 0.316 F(1,38)=4.239

p=0.046

Off-task

conversation

101.338 0.130 F(1,38)=0.651

p=0.425

Off-task

solitary

88.071 0.245 F(1,38)=2.442

p=0.126

Inactivity -28.154 0.122 F(1,38)=0.561

p=0.458

Gaming the

system

-481.503 0.130 F(1,38)=0.655

p=0.423

Automatically distillable measures

Ave. number

of errors

-0.255 0.277 F(1,38)=3.148

p=0.084

Average

number of

compilations

-0.175 0.245 F(1,38)=2.437

p=0.127

Ave. number

of seconds

between

compilations

0.028 0.055 F(1,38)=0.115

p=0.736

Pairs of

compilations

in error

-0.378 0.326 F(1,38)=4.529

p=0.040

Pairs of

compilations

with same

error

-0.637 0.303 F(1,38)=3.859

p=0.057

Pairs of

compilations

with the same

error location

-0.562 0.298 F(1,38)=3.700

p=0.062

Pairs of

compilations

with the same

edit location

-0.666 0.336 F(1,38)=4.822

p=0.034

The same process applied on the automatically distillable

measures produced a model with two factors, Pairs of

Compilations with the Same Edit Location and Pairs of

Compilations with the Same Error Location. However, the

predictive power of the model was relatively low (R2=0.120), and

The model as a whole was only marginally significant

(F(2,37)=2.524; p=0.094).

In addition, a model combining all five factors is not

significantly better than the model with just confusion, boredom,

and IDE-related on-task conversation.

5. CONCLUSION
In this paper, we asked which observable affective states and

behaviors and which automatically distillable measures can be

used to predict student achievement in CS1 courses. Based on this

study, we find that students who are confused, bored, or engaged

in IDE-related on-task conversation will most probably do less

well in the midterm exams. We also found that automatically

distillable measures such as average number of errors, pairs of

compilations in error, pairs of compilations with the same error,

pairs of compilations with the same edit location and pairs of

compilations with the same error location may also be useful in

identifying students having academic difficulty. Future work may

include a finer-grained analysis of the tractable behaviors

associated with successful or unsuccessful students.

6. ACKNOWLEDGMENTS
The authors thank Ramil Bataller, Andrei Coronel, Darlene Daig,

Jose Alfredo de Vera, Dr. Emmanuel Lagare, Ramon Francisco

Mejia, Dr. John Paul Vergara, and the technical and secretarial

staff of the Ateneo de Manila’s Department of Information

Systems and Computer Science for their assistance with this

project. We thank the Ateneo de Manila’s CS 21 A students,

school year 2007-2008, for their participation. We thank the

Department of Science and Technology’s Philippine Council for

Advanced Science and Technology Research and Development

for making this study possible by providing the grants entitled

Modeling Novice Programmer Behaviors Through the Analysis of

Logged Online Protocols and Observation and Diagnosis of

Novice Programmer Skills and Behaviors Using Logged Online

Protocols. We would also like to credit support from the

Pittsburgh Science of Learning Center, National Science

Foundation award SBE-0354420. Finally, Dr. Rodrigo thanks the

US Department of State, the Philippine American Educational

Foundation and the Council for International Exchange of

Scholars for her 2008-2009 Advanced Research and University

Lecturing Fulbright Scholarship and Eduardo Sevilla for his

helpful comments.

7. REFERENCES
[1] Baker, R.S., Corbett, A.T., Koedinger, K.R., and Wagner,

A.Z. (2004) Off-task behavior in the Cognitive Tutor

classroom: When students "Game The System". ACM CHI

2004: Computer-Human Interaction, 383-390.

[2] Bennedsen J. and Caspersen M. E. Optimists Have More

Fun, But Do They Learn Better? - On the Influence of

Emotional and Social Factors on Learning Introductory

Computer Science. Computer Science Education, 18, 1,

2008, 1-16.

[3] Cohen, J. 1960. A Coefficient of Agreement for Nominal

Scales. Educational and Psychological Measurement, 20,

37-46.

[4] Csikszentmihalyi, M. (1990). Flow: The Psychology of

Optimal Experience. New York: Harper and Row.

[5] D'Mello, S. K., Craig, S. D., Witherspoon, A., McDaniel, B.,

Graesser, A. 2005. Integrating affect sensors in an intelligent

tutoring system. In “Affective Interactions: The Computer in

the Affective Loop Workshop” In conjunction with

International conference on Intelligent User Interfaces, 7-13.

[6] Field, A. 2005. Discovering Statistics Using SPSS. London:

Sage Publications. Psychology Press: Philadelphia, PA.

[7] Goold, A. and Rimmer, R. 2000. Factors affecting

performance in first-year computing. SIGCSE Bull. 32, 2

(Jun. 2000), 39-43. DOI=

http://doi.acm.org/10.1145/355354.355369

[8] Graesser, A. C. Chipman, P., King, B., McDaniel, B., and

D’Mello, S (2007). Emotions and Learning with AutoTutor.

13th International Conference on Artificial Intelligence in

Education (AIED 2007). R. Luckin et al. (Eds), (pp 569-

571). IOS Press.

[9] Halland, K. and Malan, K. 2003. Reflections by teachers

learning to program. In Proceedings of the 2003 Annual

Research Conference of the South African institute of

Computer Scientists and information Technologists on

Enablement Through Technology (September 17 - 19, 2003).

J. Eloff, A. Engelbrecht, P. Kotzé, and M. Eloff, Eds. ACM

International Conference Proceeding Series, vol. 47. South

African Institute for Computer Scientists and Information

Technologists, 165-172.

[10] Khan, I. A., Hierons, R. M., and Brinkman, W. P. 2007.

Mood independent programming. In Proceedings of the 14th

European Conference on Cognitive Ergonomics: invent!

Explore! (London, United Kingdom, August 28 - 31, 2007).

ECCE '07, vol. 250. ACM, New York, NY, 269-272. DOI=

http://doi.acm.org/10.1145/1362550.1362606

[11] Kinnunen, P., McCartney, R., Murphy, L., and Thomas, L.

2007. Through the eyes of instructors: a phenomenographic

investigation of student success. In Proceedings of the Third

international Workshop on Computing Education Research

(Atlanta, Georgia, USA, September 15 - 16, 2007). ICER

'07. ACM, New York, NY, 61-72. DOI=

http://doi.acm.org/10.1145/1288580.1288589

[12] Kumar, S. 2008. The rise and fall of a good programmer.

Ubiquity 9, 14 (Apr. 2008), 1-5. DOI=

http://doi.acm.org/10.1145/1366321.1366323

[13] Jadud, M. C. 2006. An Exploration of Novice Compilation

Behavior in BlueJ. Doctoral thesis. University of Kent

[14] Joni, S., Soloway, E., Goldman, R., and Ehrlich, K. 1983.

Just so stories: how the program got that bug. SIGCUE

Outlook 17, 4 (Sep. 1983), 13-26. DOI=

http://doi.acm.org/10.1145/1045083.1045086

[15] Lane, H. C. and VanLehn, K. 2005. Intention-based scoring:

an approach to measuring success at solving the composition

problem. In Proceedings of the 36th SIGCSE Technical

Symposium on Computer Science Education (St. Louis,

Missouri, USA, February 23 - 27, 2005). SIGCSE '05. ACM,

New York, NY, 373-377. DOI=

http://doi.acm.org/10.1145/1047344.1047471

[16] Ovans, R. 2004. The programmer life-cycle. SIGSOFT Softw.

Eng. Notes 29, 3 (May. 2004), 25-26. DOI=

http://doi.acm.org/10.1145/986710.986720

[17] Perkins, D. N., Hancock, C., Hobbs, R., Martin F., and

Simmons, R. 1985. Conditions of Learning in Novice

Programmers. Concept Paper. Educational Technology

Center, Harvard Graduate School of Education..

[18] Rodrigo, M. M. T., Baker, R. S. J. d., Lagud, M. C. V., Lim,

S. A. L., Macapanpan, A. F., Pascua, S. A. M. S., Santillano,

J. Q., Sevilla, L. R. S., Sugay, J. O., Tep, S., & Viehland, N.

J. B. (2007). Affect and usage choices in simulation

problem-solving environments. In R. Luckin, K. R.

Koedinger, J. Greer (Eds.), 13th International Conference on

Artificial Intelligence in Education, 145-152.

[19] Spohrer, J. C. and Soloway, E. 1986. Novice mistakes: are

the folk wisdoms correct?. Commun. ACM 29, 7 (Jul. 1986),

624-632. DOI= http://doi.acm.org/10.1145/6138.6145

[20] Tabanao, E., Rodrigo, M. M. T., and Jadud M. 2008.

Identifying at-risk novice programmers through the analysis

of online protocols. Philippine Computing Society Congress

2008, (UP Diliman, Quezon City, February 23-24, 2008).

8. AUTHORS’ INSTITUTIONAL

AFFILIATIONS
1Department of Information Systems and Computer Science,

Ateneo de Manila University, Loyola Heights, Quezon City,

Philippines, +63 (2) 426-6071

2Human-Computer Interaction Institute, Carnegie Mellon

University, Pittsburgh, PA, +1 (412) 268-9690

3Department of Computer Sciences, Allegheny College,

Meadsville, PA, +1 (814) 332-2565

4Education Department, Ateneo de Manila University, Loyola

Heights, Quezon City, Philippines, +63 (2) 426-6001 loc 5230

5School of Computer Studies, Mindanao State University-Iligan

Institute of Technology, +63 (63) 221-4056

