
Flexible, Reusable Tools for Studying Novice Programmers

Matthew C. Jadud
Computer Science Department

Allegheny College
Meadville, PA USA

matthew.c@jadud.com

Poul Henriksen
Computing Laboratory

University of Kent
Canterbury, UK

p.henriksen@kent.ac.uk

ABSTRACT
We would like more computer science education research
studies to be easily replicable. Unfortunately, the tools used
for data collection are often too specialized, unstable, or just
plain unavailable for use in experimental replication. Here,
we present two tools to aid in the replication and exten-
sion of existing research regarding novice programmers—or
to support entirely new and unrelated enquiries. The first
tool is specific to the BlueJ pedagogic programming environ-
ment, and provides a starting point for replicating or extend-
ing existing studies regarding novice programmers learning
Java. The second tool is a portable, stand-alone web-server
with a language-agnostic interface for storing data. The
distinguishing feature of this server is that it is schema free,
meaning it can easily support a wide range of data collec-
tion projects simultaneously with no reconfiguration what-
soever.

Categories and Subject Descriptors
K.3.2 [Computers and education]: Computer and Infor-
mation Science Education

General Terms
Measurement

Keywords
BlueJ, CS Education Research, data logging, tools

1. INTRODUCTION
“If you want to know whether a duck is crossing the street,

you look twice.” Harry Collins, a social scientist at the Uni-
versity of Cardiff, gave this glib (yet accurate) summary of
the role of replication in experimental research. Experimen-
tal work in the physical sciences is built upon a tradition of
replication for validation, yet many studies are never repli-
cated, simply because there is not interest, or (worse yet),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICER’09, August 10–11, 2009, Berkeley, California, USA.
Copyright 2009 ACM 978-1-60558-615-1/09/10 ...$5.00.

studies are published lacking enough material to accurately
reproduce the work described[3].

Replicating a study requires a great deal of care. On one
hand, it is necessary to understand the provenance of the
original study, although this information is difficult to cap-
ture[12]: why was the study undertaken? Where was it
carried out? Under what conditions? Is replication today
comparable, and if so, to what degree? With complex pro-
tocols, researchers must be very diligent, possibly commu-
nicating with the original researchers to make sure methods
and subsequent analysis are replicated faithfully. In studies
with on-line protocols (that is, where the data is collected
via some automated, programmatic means), there is the ad-
ditional question of replicating the tools and infrastructure
for collecting and storing research data. However, this can
often be difficult—sometimes because of obsolescence (per-
haps no one teaching Pascal anymore[13]), and sometimes
because of the complexity inherent in the data gathering
infrastructure. This paper, and the tools described herein,
attempt to address this problem of a replicable infrastruc-
ture for on-line protocols.

We are interested in how novices learn to program; in par-
ticular, we are interested in replicating and extending work
regarding novice compilation behavior like that described in
[5] and [9]. This research explored the edit-compile cycle
(Figure 1) of novice programmers using BlueJ, a pedagogic
programming environment for the Java programming lan-
guage. Pilot studies indicated that students spent a signifi-
cant amount of time dealing with syntax errors when learn-
ing to program[4]; this implies to us that students are not
spending the majority of their time on the task we set for
them as instructors, but instead that they are busy fighting
the compiler. This appears to be especially so for weaker
students, or (using the terminology of Perkins et al.) the
“stoppers” as opposed to the “movers.”[8]

Compile Edit

Figure 1: Novice programmers get stuck here.

BlueJ is a programming environment developed specifi-
cally for the purpose of teaching object orientation in Java[7].
BlueJ contains all the features typically found in an inte-

37

grated development environment: a simple text editor, the
Sun Java compiler, and an integrated debugger suitable for
novice use. What sets BlueJ apart from other development
environments is the special emphasis that has been placed
on the visualization of object-oriented programs and stu-
dent interaction with those objects; through these mecha-
nisms, BlueJ supports a distinctly objects-first approach to
learning to program. Jadud’s initial explorations regarding
novice compilation behavior focused entirely on the changes
students made in their source code from one compilation to
the next. We are interested in extending this work to include
student interactions with BlueJ’s class diagram, a simplified
UML representation of their object-oriented design, and the
object bench, where instantiated objects can be interacted
with and inspected by the programmer.

Unfortunately, replicating the initial studies in this area
were problematic due to the complexity of the systems in-
volved. Jadud’s research required an Apache CGI server, a
PostgreSQL database server, and a substantial amount of
code written in Scheme (Figure 2). Reusing this framework
is problematic for several reasons. Practically speaking, it
is difficult to maintain all the services involved—webservers,
CGI environments, and databases require care and feeding.
But more problematic is that changing the type of data
collected requires changes in three places: the client, the
CGI server, and in the database itself (updating relational
schema, creating new tables, etc.). These are error prone
and tedious operations, not easily automated.

Ultimately, we are interested in helping BlueJ become an
accessible platform for research regarding novice program-
mers. While students’ interactions with the class diagram
and object bench are interesting today, it will also be inter-
esting to look at the debugger, unit testing framework, and
other custom extensions to BlueJ in the future. Therefore, it
is in our best interest (and that of the CS education research
community) to support not only our “next step” study re-
garding BlueJ, but to develop a more flexible framework
for data collection that can serve a wide variety of research
needs. To this end, we have developed a stand-alone CGI
and database server that supports schemaless data gath-
ering for any application written in any language. In the
next section, we describe our data harvesting server, and
go on to detail one instance of a data collecting extension
for BlueJ that replicates Jadud’s original work and extends
it to support our new inquiry regarding novice interaction
with BlueJ. We close with recommendations and concerns
for others interested in using these tools in their own re-
search.

2. SERVER
The goal was to reduce the complexity of running a server

capable of collecting data generated in the research regard-
ing programmers using BlueJ. Previous data collection ef-
forts required three pieces of software running on separate
hosts—a significant maintenance cost for the researcher (Fig-
ure 2). Any change in the data gathered required changes
to multiple pieces of software; in updating this infrastruc-
ture, we developed a stand-alone data gathering server that
requires no configuration on the part of the researcher (Fig-
ure 3). Once started, data from any number of collection
efforts can be inserted without any change to the server con-
figuration.

The data collection infrastructure is based on a stand-

Client CGI
server DB

fir
ew
al
l

HTTP
port 80

Figure 2: Original server infrastructure

Client
CGI

+
DB

HTTP
port 80

Figure 3: New server infrastructure

alone webserver that can be executed on most any Windows,
Linux, BSD, Solaris, or Mac OSX host. We currently have
two implementations: the first is based on the the open-
source webserver developed by the PLT Scheme research
group. The PLT webserver provides performance for dy-
namic content (in our case, remote procedure call endpoints)
that is comparable to the widely used Apache webserver[11],
and is significantly easier to install and configure. A sec-
ond implementation of the server has been implemented in
Python, and can be executed directly on most modern Linux
and Mac OSX hosts without the installation of any addi-
tional software.

2.1 Supporting choice
We have attempted to design a data collection server that

does not constrain the researcher with respect to their choice
of programming language or data manipulation tools. Both
the choice of protocol (XML-RPC) and underlying database
(SQLite) are concrete examples of flexible choices for re-
searchers interested in quickly collecting data pertaining to
their research study.

2.1.1 Server API
The server API is implemented as a pair of XML-RPC re-

mote procedure calls[15]. All reasonable programming lan-
guages have an XML-RPC library, and many languages to-
day ship with one as a part of their standard library (eg.
both Python and Ruby). A client interested in storing data
first obtains a token from the server, using the init() re-
mote procedure call:

init
Arguments: none.
A remote method of zero arguments; returns a plain-
text authentication token.

The client then encrypts the response from the init() call
using a secret shared between the client and server. Using
this, the client can then store one piece of data into the
server using the store-secure endpoint:

38

store-secure
Arguments: string token, string crypt,
array name, array fields, hash data.
Returns the authentication token in plaintext and en-
crypted form using a secret key known to the client and
server. The schema is transmitted as a list of column
names and types (fields). The data is transmitted in
a hash table of column name / value pairs.

These two methods are invoked, in sequence, for each
piece of data inserted into the database.

Without authentication, a client requires only a few lines
of code to store data to the server. Our complete client,
with authentication and exception handling, is roughly 200
lines of Java. The server code is approximately 400 lines of
Scheme, is well commented, and provides ample documenta-
tion regarding the implementation of this API. The Python
server does not currently implement authentication, and is
roughly 100 lines of code. As will be discussed in Section 5,
our authentication provides only a modicum of security in
an attempt to prevent rogue clients from inserting random
data into the collection server—hence it has not (yet) been
added to the Python implementation.

2.1.2 Server DB
The data collection server can use one of two relational

database backends. It can be configured to either use Post-
greSQL1, a robust, open-source relational database server,
or SQLite, a file-based database system2. SQLite is the
default, and a good choice for many reasons. It is an open-
source library, well documented, widely used, and it is pos-
sible to interact with an SQLite database from most any
programming language. Indeed, many tools (both graphical
and command-line driven) exist for browsing and interacting
with SQLite database files. Perhaps most importantly, no
special provision needs to be made for backing up an SQLite
database—one simply copies the file, and it is “backed up.”
For ongoing research, having an easily accessed, shared, and
archived database format simplifies data sharing and tool
development over time.

2.2 Supporting change
While working with widely used and open-source tools

helps future-proof a data collection effort, nothing will pro-
tect a researcher from changing data collection requirements.
As a researcher goes from the initial design of a study, to a
pilot, and on to a larger data collection effort, their questions
may change, and therefore the data collected may change as
well. This is typically a difficult proposition in traditional
database designs, as the database schema must be modified,
tables extended, and other changes made to the database
which add complexity to the ongoing database collection ef-
fort.

For this reason, the database schema has been moved from
the server (where it normally resides) to the client. A client
does not just ship the data to the server, but instead it ships
both the data and the schema to the server. This allows re-
searchers to quickly develop data collection clients without
ever reconfiguring their data collection server; they simply
evolve the schema on the client until it captures the kind of

1http://www.postgresql.org/
2http://www.sqlite.org/

more dataless data

GRUMPSAWT
Events

BlueJ
Extensions

sweet spot

Figure 4: Finding the data collection “sweet spot.”

data they want, and the server quietly creates the appropri-
ate tables to accommodate each subsequent change in the
schema.

As discussed in the introduction (Section 1), this flexibil-
ity was essential in developing a new data gathering client
for BlueJ. Whereas the previous data collection framework
required changes to the client, CGI, and database for each
new piece of data, this server infrastructure allowed us to fo-
cus entirely on the data collection client. And this is where a
researcher’s focus should be—making sure that they are col-
lecting the data they need to answer interesting questions,
not reconfiguring CGI and database servers.

3. A CLIENT IN BLUEJ
The goal in collecting data from an environment like BlueJ

is to answer one or more research questions. While the
server infrastructure presented can log anything, that does
not mean that one should. Exactly how much data one needs
is greatly dependent on the question being asked.

When studying the use of software written in Java, it
is possible to instrument the virtual machine to provide
data about everything. The GRUMPS project took this
approach—Evans et al. developed tools for studying pro-
grammers developing software in Ada using an IDE written
in Java[1]. Their work required them to develop techniques
for handling millions of events in a typical logging session,
from which they would attempt to distill patterns of user
behavior. This approach falls into the category of “log ev-
erything, search later.” We are interested, instead, in find-
ing a “sweet spot” that involves a more targeted collection
of data (Figure 4). Instead of capturing everything, we are
interested in developing clients that let us focus on interac-
tions reported by BlueJ’s high-level event mechanism down
through the data we can get from the Java AWT—which
could yield thousands of events in a typical programming
session.

The BlueJ extensions API generates two high-level classes
of events:

Compilation events Generated every time a class is com-
piled and contains detailed information about the com-
pilation.

Interaction events Generated whenever the user interac-
tively invokes a method on an object or a constructor
on a class. The event contains detailed information
about the method that has been invoked.

3.1 What is logged?
Initial studies of novice compilation behavior began at the

far left of the proposed “sweet spot;” the client presented
here continues to use the high-level BlueJ Extensions API as
the source for information about the behavior of program-
mers using BlueJ. We decided to gather both compilation

39

data (to replicate previous studies) and interaction data (to
extend and address new questions).

Regarding compilation behavior, the BlueJ extension mech-
anism generates one or more events every time a student
compiles a class. From a compilation event we log informa-
tion such as:

• Source code of the compiled file (or files).

• Whether the compilation was successful.

• Detailed messages from the compiles (warnings and
errors).

• Time spend on compilation.

To support the expanded study regarding how novices in-
teracted with the BlueJ class diagram and object bench we
added support for the logging of interaction events. These
are generated every time the user invokes a method on a
class (in the UML diagram) or object (on the object bench).
From the invocation we log information such as:

• Method name

• ID for the object the method was invoked on

• Class the method belongs to

• Parameter types and values

• Return value

• Exceptions thrown by the method

In addition to these specific values, additional metadata
to support the inquiry were captured; this does not differ
greatly from that reported in [5], and includes information
like the operating system, the username reported by the
operating system (uniquely anonymized), IP address, host
name, the BlueJ project name, a session-local sequence num-
ber for the event, and time of the event. In this particular
instance, the experimental design called for the obfuscation
of all data that might uniquely identify any one student.

3.2 Supporting change
As with the server, one goal for the client was to make it

as flexible and as extensible as possible. There are two areas
where flexibility is needed: first, in extending the client to
log new types of data (eg. new events, new metadata); and
second, using different protocols to store the data. Of these,
the most change is anticipated in exactly what information
is logged, but not how.

Changing what is logged allows for the collection of new
data (and therefore the support of new studies) within the
existing architecture. Figure 5 shows the relevant parts of
the client architecture that support change. Researchers in-
terested in supporting new data logging capabilities should
extend the abstract class EventData to implement the fol-
lowing methods:

String getName() Returns the name of the data logged.
This will be part of the name of the schema on the
server.

Iterator iterator() Returns an iterator to key/value pairs
of data.

EventData

CompilationData InteractionData

Shipper

XmlRpcShipperSysoutShipper

ShippingQueueLogger

cr
ea

te
s

adds

sh
ip

s

Figure 5: Architecture of the client.

File getPackageDir() Returns the package in which this
event occurred. BlueJ has one window open per pack-
age.

int getStartTime(), int getEndTime() Return when the
event started and ended.

When creating a new EventData object, the metadata
common to all EventDatas is automatically added to it.
The key/value pairs of the iterator() must be of type
String for the keys, and the values can be of the type
Integer, Double, Boolean, or String (a limitation of the
XML-RPC protocol). Once a new EventData object is cre-
ated, it is placed in the ShippingQueue, and then shipped,
stored, or ignored, depending on how the Shipper is imple-
mented. The provided SysoutShipper prints the contents of
EventData objects to standard out, while the XmlRpcShipper
sends data over HTTP using the XML-RPC protocol de-
scribed in Section 2.1.1.

3.3 Installing the logging extension
As a BlueJ extension, the client can be installed in sev-

eral different ways. A BlueJ extension is a JAR file that is
automatically loaded and started by BlueJ if placed in the
correct place. Extensions can be installed on per project,
per user, or per computer basis, or network-wide. Installing
the logging extension per project makes it possible to only
log data from one particular project and avoids logging data
from other projects that a student might work on. A per
user installation can be useful in a lab setting where the
researcher wants to log everything a particular student is
doing in BlueJ, but not other users using that computer.
A per computer installation logs everything from that com-
puter. In the case where BlueJ is installed on a network, an
entire campus of users can be monitored.

The configuration file delta.properties must be edited, and
four properties set, before deploying the client:

location For multi-institutional studies this will typical be
the name of the institution. This will be part of the
schema name.

server.type Fully qualified class name of the shipper class
to use for storing the data.

server.address The address for the server. The interpre-
tation of this property is done by the specific shipper
chosen.

debug A boolean indicating whether debug output should
be enabled.

40

This properties file and the associated JAR must then be
dropped into either the project-local, user-local, computer-
local, or network-wide BlueJ extensions folder (network-
wide means that BlueJ is installed on a networked drive).
The next time a project containing that extension is launched
(or any project in the case of user/computer/network instal-
lations), the data logging client begins its work, shipping the
results of compilation and interaction events to the described
server.

4. STUDIES ENABLED
From 2006 through 2009, our schema-free server has been

used to support the replication and extension of previous
studies of novice programmers carried out by Jadud[5]. Be-
cause it is lightweight and can be deployed as a user on
any typical Linux host, it has successfully been used for in-
place data gathering at multiple research sites, eliminating
the need for a DBA or similar support in setting up and
maintaining a data collection server.

Tabanao et al. in 2008 successful demonstrated the repli-
cation of prior studies of novice programmer behavior using
this collection framework[14]. This work is particularly in-
teresting because it demonstrates a connection between the
behavior of novice programmers (as captured by their inter-
actions with the compiler) and their performance in their
introductory programming course (as measured by course-
work and examinations).

Rodrigo et. al expanded this line of inquiry to include
questions regarding student affect. In particular, they have
begun investigating the intersection of automatically col-
lected data and student affect in the context of introductory
programming[10]. Following on from this initial work are re-
sults indicating that data collected with our framework can
be correlated to student affect. Put simply, it is possible
to correlate compilation behavior with affective states like
frustration[9]. This remains an open and ongoing line of
inquiry.

4.1 Related and Future Work
Recently, a clean-room implementation of the data col-

lection framework described here was published at SIGCSE
2009[2]. The results of Fenwick et al.’s replication support
the findings of Jadud and Tabanao et al. Along with our
successful three-year use of these tools, we take it as exter-
nal validation that the kind of data we are collecting has
utility in the study of novice programmers.

In continuing to expand and improve our analytical tools
and techniques, we wish to support additional researchers
in similar or related inquiries. This kind of data collection
results in rich, complex data that can benefit from many
eyes and many kinds of analysis. To this end, we have be-
gun to develop a relationship with the Pittsburgh Science
of Learning Center, and are hoping to find ways to tie the
output of our data collection tools into DataShop, an open
data repository developed to support the longitudinal study
of fine-grained educational data[6].

5. POTENTIAL PITFALLS
Both the client and server provided a very flexible environ-

ment for replicating and extending previous work regarding
novice programming behavior in BlueJ. In particular, it was
invaluable being able to extend the client, test it in BlueJ,

and rapidly cycle back to add new data to the logging exten-
sion (or remove data that turned out to be less-than-useful).
That said, the approach to data collection described here is
not without its problems.

First, the encoding of text is a constant problem. The
BlueJ text editor is a Unicode-aware editor; therefore, every
tool in our chain must be Unicode-aware, or we risk the
possibility of data loss. Although not strictly necessary, the
client takes the precaution of Base64 encoding the Unicode
strings before sending them to the server along with the
actual encoding used; this gives some confidence that server-
or client-side localization settings will not somehow corrupt
or otherwise transform the data.

Second, the server is currently only “secure” to a de-
gree. In our current implementation, both the client and
the server must be configured with a common pass phrase.
Although the client is distributed in binary form (perhaps
in a BlueJ project), simply running the UNIX command
strings over this file will yield the pass phrase. Using this
pass phrase, it is possible for someone to build a client ca-
pable of sending data to (but not retrieving data from) a
collection server. This makes for an easy disk-filling attack,
where rogue clients might store many large records to the
server. Any number of solutions to this problem could be
implemented, but we believe the potential value of these at-
tacks makes them unlikely in the first instance. More robust
means of securing the server are obviously possible, and will
be considered/implemented as necessary.

Lastly, the XML-RPC protocol is both a liberating and
limiting choice; it raises the level of abstraction at which a
client can communicate with the server, but is limiting as to
the types of data that can be shipped within the protocol.
However, the choice of this verbose protocol allows for the
easy interaction of clients and servers written in any number
of languages. Short of using an ad-hoc RESTful protocol3,
XML-RPC appeared to be the most widely implemented
solution available.

6. CONCLUSION
An infrastructure for flexibly and extensibly storing data

is only one part of a much larger puzzle when it comes to
computer science education research. That said, we have
taken steps to use tools that simplify at least part of the
challenge of collecting data using on-line protocols. Our
choice of protocol (XML-RPC) allows for many languages
and environments to serve as the client in a data gathering
exercise. Likewise, our server uses a common database for-
mat (SQLite), making it accessible to a wide variety of data
analysis tools.

Multiple studies resulting in Masters theses and other
publications have been supported through the use of this
light, flexible database infrastructure. We hope these tools
will continue to provide a foundation for researchers inter-
ested in developing sharable and replicable studies regarding
students and experts alike in the computing world.

3http://en.wikipedia.org/wiki/REST

41

7. OBTAINING THE SOFTWARE
All of the software discussed here (as well as additional

tools developed as part of our efforts or contributed by
colleagues) is open-source and is available via Subversion.
Browsing to the URL http://svn.jadud.com/ncb/ provides
a web-based view of a publicly-readable Subversion reposi-
tory. The README file provides instructions for download-
ing and using this material, describing its installation and
use.

8. ACKNOWLEDGMENTS
Many thanks are due to Ian Utting, Michael Kölling, Sally

Fincher, and David Barnes for their input in the develop-
ment of this infrastructure. Additional thanks to Michael
Hughes at Olin College, Ma. Mercedes Rodrigo, Ma. Beat-
riz Espejo-Lahoz, and Emily Tabanao at the Ateneo de
Manila University, and Ryan Baker at Carnegie Mellon Uni-
versity for their support and collaboration.

9. REFERENCES
[1] H. Evans, M. Atkinson, M. Brown, J. Cargill,

M. Crease, S. Draper, P. Gray, and R. Thomas. The
pervasiveness of evolution in grumps software. Softw.
Pract. Exper., 33(2):99–120, 2003.

[2] J. B. Fenwick, Jr., C. Norris, F. E. Barry, J. Rountree,
C. J. Spicer, and S. D. Cheek. Another look at the
behaviors of novice programmers. In SIGCSE ’09:
Proceedings of the 40th ACM technical symposium on
Computer science education, pages 296–300, New
York, NY, USA, 2009. ACM.

[3] J. Giles. The trouble with replication. Nature,
442(7101):344–347, July 2006.

[4] M. C. Jadud. A first look at novice compilation
behavior. Computer Science Education, 15(1):25–40,
2005.

[5] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In ICER ’06: Proceedings of
the 2006 international workshop on Computing
education research, pages 73–84, New York, NY, USA,
2006. ACM Press.

[6] K. R. Koedinger, K. Cunningham, A. Skogsholm, and
B. Leber. An open repository and analysis tools for
fine-grained, longitudinal learner data. In Educational
Data Mining 2008: 1st International Conference on
Educational Data Mining, Proceedings, pages 157–166,
2008.

[7] M. Kolling, B. Quig, A. Patterson, and J. Rosenberg.
The BlueJ system and its pedagogy. Journal of
Computer Science Education, Special issue on
Learning and Teaching Object Technology,
13(4):249–268, December 2003.

[8] D. Perkins, C. Hancock, R. Hobbs, F. Martin, and
R. Simmons. Conditions of learning in novice
programmers. Studying the Novice Programmer, 1989.

[9] M. M. T. Rodrigo, R. S. Baker, M. C. Jadud,
A. C. M. Amarra, T. Dy, M. B. V. Espejo-Lahoz,
S. A. L. Lim, S. A. M. S. Pascua, J. O. Sugay, and
E. S. Tabanao. Affective and behavioral predictors of
novice programmer achievement. In ITiCSE ’09:
Proceedings of the 14th annual conference on
Innovation and technology in computer science
education, New York, NY, USA, 2009. ACM.

[10] M. M. T. Rodrigo, R. S. j. Baker, J. O. Sugay, and
E. Tabanao. Monitoring novice programmer affect and
behaviors to identify learning bottlenecks. In
Philippine Computing Society Congress 2009:
Research-in-Progress, March 2009.

[11] Shriram Krishnamurthi and Peter Walton Hopkins
and Jay McCarthy and Paul T. Graunke and Greg
Pettyjohn and Matthias Felleisen. Implementation and
Use of the PLT Scheme Web Server. Higher-Order and
Symbolic Computation, 2007.

[12] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of
data provenance in e-science. SIGMOD Rec.,
34(3):31–36, 2005.

[13] J. C. Spohrer and E. Soloway. Analyzing the high
frequency bugs in novice programs. In Empirical
Studies of Programmers, pages 230–251. ACM, 1986.

[14] E. Tabanao, M. M. T. Rodrigo, and M. C. Jadud.
Identifying at-risk novice programmers through the
analysis of online protocols. In Philippine Computing
Society Congress 2008, 2008.

[15] D. Winer. XML-RPC Specification, January 2007.
http://www.xmlrpc.com/spec/.

42

