
Concurrency, Robotics, and RoboDeb

Christian L. Jacobsen and Matthew C. Jadud
University of Kent
Canterbury, Kent

CT2 7NF
UK

Introduction

Robotics is an engaging and natural application area for con-
current and parallel models of control. To explore these
ideas, we have developed environments and materials to
support the programming of robots to do interesting tasks
in a fundamentally concurrent manner. Our most recent
work involves the development of RoboDeb, a “virtual com-
puter” pre-installed with the open-source Player API and
Stage simulator to support classroom exploration of concur-
rency and robotic control using the occam-π programming
language.

Concurrency, naturally

We believe in powerful abstractions, and programming lan-
guages are abstractions unto themselves. When it comes to
developing programs for robots, we want to choose tools
that help us correctly implement our concurrency as natu-
rally as possible. This implies to us that the language we use
to implement robotic control solutions should have powerful
abstractions and constructs for dealing with ideas regarding
parallelism and choice.

There are many languages that are closely tied to a for-
malism of one sort or another; for example, both Haskell
and Scheme draw heavily on the lambda calculus. Nei-
ther of these languages necessarily requires you to know the
lambda calculus—but it provides a model that helps keep
the language theoretically self-consistent. Similarly, the
programming language occam-π (INMOS Limited 1988;
Barnes & Welch 2004) is closely tied to the Communicat-
ing Sequential Processes algebra—an algebra for describing
concurrently executing processes that interact over synchro-
nizing communications channels (Hoare 1985). Using a lan-
guage like occam-π, we can think about, design, and imple-
ment concurrent control constructs without resorting to low-
level primitives like threads, locks, and semaphores. This
is in contrast to languages like C, C++, Java, and Python,
which are all sequential in nature, and provide limited sup-
port for managing the complexity of concurrent solutions to
problems(Boehm 2005).

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Sense Compute Actuate
laz moto

1 CHAN LASER laz:
2 CHAN MOTOR moto:
3 PAR
4 Sense(laz!)
5 Compute(laz?, moto!)
6 Actuate(moto?)

Figure 1: A three-process network, and occam-π code rep-
resenting it.

Regarding occam-π

Consider a simple robot: input comes from its sensors, out-
put is directed to its actuators, and it performs some com-
putation in-between. We might imagine these tasks as three
communicating processes (Figure 1). The Sense process
reads from hardware, and passes that data down a channel to
the Compute process. After decisions have been made in
the Compute process, motor commands may (or may not)
be passed on to the Actuate process, which then alters the
hardware state in accordance with those commands.

The occam-π code in Figure 1 serves as a description of
the diagram above it. In the program fragment two channels
are declared, and then three processes are executed in par-
allel that communicate over those channels. These six lines
of code capture several critical aspects of the language, and
indirectly, the CSP algebra:

PARallel execution The three processes (Sense,
Compute, and Actuate) are running in parallel
(because they are grouped under a PAR block). We trust
the runtime environment to interleave them fairly (if we
are on a uniprocessor computational device), or to split
them up across multiple computational units if possible.

Unidirectional channels The channels linking the three
processes are unidirectional, and have two defined ends.
The Sense process holds one end of the laz channel—
the transmission, or sending end. This is denoted with the



’!’, which is notation that comes from the CSP algebra.
Similarly, the Actuate process holds the receiving end
of the moto channel, which is denoted by the presence of
a ’?’. As can be seen the Compute process holds the re-
ceiving end of the laz channel, and the transmission end
of the moto channel.

Synchronizing communications Not visible in the dia-
gram or code is the fact that communications in this
paradigm are blocking. When the Sense process com-
mits to sending data to the Compute process over the
laz channel, it blocks until the corresponding read action
happens on the other end. The blocking nature of commu-
nications in the occam-π programming languages is how
we know where synchronization between concurrent pro-
cesses will take place.

Each of these processes is entirely self-contained—there is
no global or shared state in occam-π, as this is an obvious
source of dangerous race hazards. If data is to move from
one concurrent process to another, it happens over a chan-
nel, and that process is governed by the runtime environ-
ment. Just like the Java compiler and runtime environment
handle issues regarding the automatic management of mem-
ory, the occam-π compiler and runtime environment helps
us correctly implement our concurrency.

For discussion

There is obviously much more to occam-π than can be
quickly described here. Hopefully, this rapid tour of the
language provides a sense for how concurrent and parallel
solutions to interesting problems need not become bogged
down in the details of implementing that concurrency. In
(Jacobsen & Jadud 2005), we have described our own work
applying this to teaching with the LEGO Mindstorms. More
recently, and on larger robotics platform, Jon Simpson (a
rising 3rd-year undergraduate at the University of Kent)
has begun exploring the subsumption architecture and how
we might express Rodney Brooks’s ideas regarding layered
robotic control in occam-π (Simpson, Jacobsen, & Jadud
2006).

In this paper, we want to talk about our use of occam-π and
robots in the classroom. We have had three opportunities to
put our ideas into practice. In Cool Stuff in Computer Sci-
ence, an extra-curricular series of laboratories for undergrad-
uates in the Computing Laboratory at the University of Kent,
we tested early implementations of occam-π on the LEGO
Mindstorms. In CO631: Concurrency Design and Practice,
a second year course in the same department, we developed
a series of linked exercises for introducing occam-π in the
context of the Pioneer3, both real and virtual. Lastly, in a
guest lecture and workshop at the University of Copenhagen
in Denmark, we focused less on the language and more on
doing interesting things as quickly as possible using the tools
we had developed; we will focus on this educational experi-
ment here.

Our work at Kent and in Denmark required the develop-
ment of RoboDeb, a VMWare virtual appliance that gives

brain.stem

laz!

moto?

Figure 2: The brain.stem process with a sensor output
channel, sick!, and an input channel, moto?.

us a complete simulation environment for large robotics
platforms via the open-source Player/Stage API (Gerkey,
Vaughan, & Howard 2003). While we prefer physical ma-
nipulatives to simulation for many reasons, it is not always
possible to bring enough robots with you to run a class or
seminar. So, in addition to being portable, the RoboDeb en-
vironment has a number of desirable features (e.g. it is eas-
ily installed under Windows and Linux, and updates itself
in-place), and has made our most recent educational explo-
rations possible.

Robotic caution in Copenhagen

The students at the University of Copenhagen were familiar
with concurrent models of programming from their course-
work in Extreme Multiprogramming, but had little or no ex-
perience with either robotics or the programming language
occam-π. In a short introductory lecture, we introduced the
ideas of processes and channels. A process is a piece of code
that runs, perhaps forever. A channel is a “wire” connecting
two (and only two) processes that can carry data from one
to another... but in one direction only. Lastly, we stressed
that communication on these wires is blocking; this means
that when we begin writing to or reading from a channel,
we must wait until the process at the other end decides to
engage in the corresponding read or write.

These ideas allowed us to begin our first exercise—to de-
velop a robot that is cautious in its navigation of a space1.
We defined a cautious robot as one that slows down when
it is near an obstacle. Essentially, our robot was a simple
Braitenburg vehicle (Braitenberg 1986).

In keeping with our notion of concurrent processes, the first
process students saw was the brain.stem process. The
brain.stem is a process that outputs sensor data, and
takes in motor commands (Figure 2).

The second process we introduced the students to was
caution. This process can be “wired up” to the
brain.stem process, because they are complimentary:
one communicates sensor data and reads motor commands,
while the other reads sensor data and produces motor com-
mands. Figure 3 depicts the full process network for our

1The exercise is included in the download of our robotics simu-
lation environment RoboDeb. It is additionally available online at
http://www.transterpreter.org/wiki/Teaching.



main

brain.stem

laz

moto
caution

ky
b?

sc
r!

er
r!

1 PROC main(CHAN BYTE kyb?, scr!, err!)
2 CHAN LASER sick:
3 CHAN MOTOR moto:
4 PAR
5 brain.stem.ML(moto?, sick!)
6 caution(moto!, sick?)
7 :

Figure 3: The brain.stem process wired up to
caution, wrapped in the main process, and the corre-
sponding occam-π program.

robot and the complete occam-π program for a “cautious”
robot as experienced by the students at DIKU.

At this point in the process, the students do not know
how either the brain.stem or caution processes work
internally—they are black-box components for which we
only know the API. In thes case of occam-π processes, the
API is always the channels a process reads from or writes
to, and the type of information carried on those channels.
There is no notion of state outside of a process, and the only
way for processes to share data is by communicating over
channels.

The workshop exercise continued to explore this notion of
wiring together ready-made processes to produce robots
with interesting behaviors. The worksheet material provided
no more than 30 minutes of distraction; students wanted to
know how to program their own processes. For this reason,
we provided them with the source code to processes like
caution, and a simplified language reference. Because
occam-π is a small language with a consistent, indentation-
based syntax, the students (mostly third- and fourth-years)
at the University of Copenhagen were able to quickly move
on to modifying and extending the processes provided in our
small library.

Lessons learned the hard way

Our experiences in Denmark are not the result of isolated
brilliance on our part, but instead the result of a learning pro-
cess. Our first use of occam-π for programming robotics
platforms was at the University of Kent in our extracurric-
ular program Cool Stuff in Computer Science. Developed

by the authors, this series of workshops (open to any stu-
dent at the University of Kent) attracts motivated Comput-
ing and Electronics majors who are interested in engaging
with challenging material from outside their normal course
of study. It is in this context that we first began exploring
the use of occam-π on the LEGO Mindstorms. The ex-
periement was partially successful, but students were frus-
trated at the time by the immature nature of the tools and
documentation. However, because Cool Stuff in Computer
Science attracts motivated and energetic students, we were
able to set them the challenge of being beta testers for our
early ideas and software. So while our tools left some of the
students wanting, they were glad to have provided us with
valuable, early feedback.

These early experiments led to the use of the first editions
of RoboDeb in the course CO631: Concurrency Design and
Practice at the University of Kent. In this course, we pre-
sented a series of exercises to the students that culminated in
their development of a robot that could wander a maze using
a combination of the a forward-facing laser rangefinder and
an array of ultrasound sensors. While the students managed
the exercises and appreciated them, we felt that too much
time was spent “teaching the language,” and not enough time
was spent by the students thinking about concurrent models
of robotic control.

The combination of these experiences led us to reflect on the
notion of no concept before its time. In producing the lec-
ture and materials for presentation at DIKU, we worked hard
to keep things as simple as possible. In this regard, we felt
that the notion of concurrent, communicating processes was
the single most valuable concept they could experience in a
short tutorial session. By minimizing our focus on the lan-
guage, and instead encouraging the assembly (as opposed to
the definition) of concurrent components, the students par-
ticipating in the workshop were able to quickly “wire up”
programs from a small library to create robots with interest-
ing and sometimes surprising behaviors. In this regard, we
feel that our work in Copenhagen was very successful.

To support all of these educational explorations, we needed
an environment that could easily be used by students for pro-
gramming a robot both in and out of the laboratory. This
need drove our development of RoboDeb as a platform for
exploring concurrency and robotics in a virtual environment.

RoboDeb: virtual concurrency and robotics

To support these kinds of explorations, we developed the
RoboDeb environment for programming a simulated Pio-
neer3 in a variety of languages. Put simply, RoboDeb is
a virtual machine; to use it, one must first install VMWare
Player, a freely available application for both Windows and
Linux2. Once VMWare Player is installed, RoboDeb can be
downloaded from the Transterpreter website, decompressed,
and booted3. At this point students can begin programming

2http://www.vmware.com/products/player/
3http://robodeb.transterpreter.org/



simulated robots in a variety of virtual worlds. Figure 4
depicts a RoboDeb session with an editor (and occam-π
program) running in the foreground, which in turn is con-
trolling multiple (simulated) Pioneer3 robots running in the
background.

The RoboDeb environment was assembled with a number of
diverse goals in mind.

Concurrency We wanted an environment that supported a
concurrent approach to programming robots that could
then be applied in the real world. In this regard, Ro-
boDeb is a success—programs written in the simulator
in occam-π can then be run directly on the department’s
Pioneer3 without modification.

Portability RoboDeb makes it possible for students to de-
velop programs both at home and in the lab, with a mini-
mum amount of effort on the students’ part. Most impor-
tantly, installation is a simple and non-invasive installa-
tion procedure—it is a download and a double-click, for
all intents and purposes.

Scalability With similar robotic configurations, it is possi-
ble to run the same occam-π program on a Pioneer3 as
on a LEGO Mindstorms. The runtime environment for
occam-π programs is very small (approx. 12KB); as a
result, students can move from one platform to another
without sacrificing powerful tools for managing concur-
rency in the context of robotics and embedded systems
(Jacobsen & Jadud 2004).

Neutrality The RoboDeb environment is just a Linux vir-
tual machine. Initally, we included the facility for stu-
dents to program robots in Java as well as occam-π.
In our next release of RoboDeb we hope to include a
complete Pyro installation, allowing instructors and stu-
dents to use this mature framework for exploring AI and
robotics (Blank et al. 2003). This increases the value of
a single RoboDeb installation and opens up other avenues
of exploration for interested students who wish to explore
robotics and AI further.

Updatability RoboDeb can be updated with a double-click.
This allows students and users of the virtual machine to
obtain updates to languages, libraries, and software with-
out requiring a complete reinstall of the virtual machine.

RoboDeb serves needs that are not, to the best of our knowl-
edge, easily met by any other freely available robotics sim-
ulation environment.

Looking forward

Looking forward, we have many improvements to the Ro-
boDeb environment and our instructional materials support-
ing the exploration of concurrency and robotics.

For example, if all of the software installed on the virtual
appliance was available as Debian packages, then it would
be possible to easily “install” RoboDeb on a desktop (run-
ning GNU Debian Linux) without VMWare Player. This

would also simplify our maintenence and upgrade proce-
dures greatly. Even without these improvements, RoboDeb
provides an environment where our students can explore
concurrency and robotics under Windows and Linux. Per-
haps just as importantly, the occam-π programs they write
against the Player/Stage API can be run directly against the
department’s Pioneer3, which we find is an exciting prospect
in many cases.

We have begun exploring the interesting intersections be-
tween the design of robotic control and highly concurrent
software. Ultimately, we are interested in providing our stu-
dents with concrete experiences in which they can ground
learning regarding concurrent software design. To get there
requires a combination of tools, instructional methods, and
learning resources that support us, as instructors, in creating
challenging learning environments for our students.

References
Barnes, F. R. M., and Welch, P. H. 2004. Communicating
Mobile Processes. In Communicating Process Architec-
tures 2004, 201–218.
Blank, D.; Kumar, D.; Meeden, L.; and Yanco, H. 2003.
Pyro: A python-based versatile programming environment
for teaching robotics. J. Educ. Resour. Comput. 3(4):1–15.
Boehm, H.-J. 2005. Threads cannot be implemented as a
library. In PLDI ’05: Proceedings of the 2005 ACM SIG-
PLAN conference on Programming language design and
implementation, 261–268. New York, NY, USA: ACM
Press.
Braitenberg, V. 1986. Vehicles: Experiments in Synthetic
Psychology. Cambridge, MA, USA: MIT Press.
Gerkey, B.; Vaughan, R.; and Howard, A. 2003. The play-
er/stage project: Tools for multi-robot and distributed sen-
sor systems. In Proceedings of the International Confer-
ence on Advanced Robotics (ICAR 2003), Coimbra, Portu-
gal, June 30 - July 3, 2003, 317–323.
Hoare, C. 1985. Communicating Sequential Processes.
Prentice-Hall, Inc.
INMOS Limited. 1988. Transputer reference manual. Up-
per Saddle River, NJ 07458, USA: Prentice-Hall. Includes
index. Bibliography: p. 315-324.
Jacobsen, C. L., and Jadud, M. C. 2004. The Transter-
preter: A Transputer Interpreter. In Communicating Pro-
cess Architectures 2004, 99–107.
Jacobsen, C. L., and Jadud, M. C. 2005. Towards con-
crete concurrency: occam-pi on the LEGO mindstorms. In
SIGCSE ’05: Proceedings of the 36th SIGCSE technical
symposium on Computer science education, 431–435. New
York, NY, USA: ACM Press.
Simpson, J.; Jacobsen, C. L.; and Jadud, M. C. 2006.
Mobile Robot Control - The Subsumption Architecture
and occam-pi. In Welch, P.; Kerridge, J.; and Barnes,
F., eds., Communicating Process Architectures 2006, 225–
236. Amsterdam, The Netherlands: IOS Press.



Figure 4: RoboDeb in action.


