
Communicating Process Architectures 2004
Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
IOS Press, 2004

99

The Transterpreter:
A Transputer Interpreter

Christian L. JACOBSEN
clj3@kent.ac.uk

Matthew C. JADUD
matthew.c@jadud.com

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK

Abstract. This paper reports on theTransterpreter: a virtual machine for executing
the Transputer instruction set. This interpreter is a small, portable, efficient and ex-
tensible run-time. It is intended to be easily ported to handheld computers, mobile
phones, and other embedded contexts. In striving for this level of portability,occam
programs compiled to Transputer byte-code can currently be run on desktop comput-
ers, handhelds, and even the LEGO Mindstorms robotics kit.

1 Introduction

occam [1] is an excellent language for reasoning about and writing programs dealing with
concurrency and parallelism. Robots and other embedded systems are natural applications
for occam, as are many programming problems which are often tackled with languages that
have insufficient support for expressing concurrency [2]. We believe that writing programs
for the LEGO Mindstorms [3], a small robotics platform produced by the LEGO Group, is a
natural application of theoccam programming language.

occam was originally the language of the Transputer, a microprocessor specifically de-
signed for parallel processing. To encourage adoption of and development on the Transputer,
Inmos Ltd. developed the Portakit, a portableoccam interpreter [4]. In the spirit of the
Portakit, we have written an interpreter that executes the Transputer instruction set. This in-
terpreter, which we call theTransterpreter, can be easily built and executed on any platform
with an ANSI-compliant C compiler. The Transterpreter currently runs on many operating
systems and architectures, including Macintosh OS X (PowerPC), Linux (x86, MIPS), Win-
dows (x86), and the LEGO Mindstorms (running the BrickOS [5] on a Renesas H8/300 series
CPU).

In this paper, we begin by describing our pedagogic motivations for developing the
Transterpreter. This is followed in section 3 by an exploration of related work regarding
occam interpreters and the existing tool chains for compilingoccam programs. In section 4
we discuss the architectural and design aspects of the Transterpreter that we believe to be
interesting, some simple benchmarking results in 5, and close by briefly discussing future
directions of our work.

2 Pedagogic Motivation

occam’s syntax provides a concise way of expressing ideas about concurrency and paral-
lelism, and we believe it to be an excellent language for teaching these ideas. However,



100 C.L. Jacobsen and M.C. Jadud / The Transterpreter

students tend to perceive things differently: they tend to seeoccam as having little or no
practical application in the world today. Our goal is to begin combating student miscon-
ceptions aboutoccam by providing an enjoyable context to which students can relate. We
believeoccam on the LEGO Mindstorms will be an excellent starting point for students in
their study of concurrency and parallelism.

2.1 The LEGO Mindstorms Robotics Kit

The LEGO Mindstorms Robotics In-

Figure 1: A treaded LEGO robot with two touch sensors

vention System is a commercial product
from the LEGO Group that provides an in-
expensive, re-configurable platform for ex-
ploring robotics [3]. It has three input ports
(where touch, light, and other sensors can
be attached), three output ports (for mo-
tors), and a two way infra-red port. This is
used to download programs to the LEGO
as well as enable line-of-sight communi-
cation between robots.

2.2 occam on the LEGO

When programming for the LEGO Mindstorms, students quickly face the difficulty of ex-
pressing ideas about concurrency in the procedural or object-oriented languages available.
As an example, a robot which is intended to wander around the lab bench while communi-
cating with other robots is difficult for novices to write in languages like C and Java.1 Fur-
thermore, libraries like JCSP [6] that provide explicit support foroccam-style parallelism
are too heavyweight (with respect to executable code size and run-time memory require-
ments, compounded by the already large requirements of the JVM interpreter) and therefore
barely usable on machines the size of the LEGO.2 Programmable robotics kits like the LEGO
Mindstorms provide students with a real-world motivation for thinking about parallelism and
concurrency; usingoccam to express those ideas seems like a natural choice in this domain.

We see the Mindstorms as an artefact with which students can begin to observe the ab-
stract world of an executing program in a real and concrete way. A LEGO robot provides
a focus for interactions between peers and the instructor, real-world learning situations, and
an opportunity for students to have fun in the classroom [7]. To motivate students to think
and program concurrently, we believe it is important to begin by creating a challenging and
engaging environment for learning to take place in.

3 Related Work

To achieve our goal of runningoccam programs on the LEGO, we have implemented the
Transterpreter, a virtual machine for executing Transputer byte-code. Our work is related
to the interpretation ofoccam, the emulation of the Transputer, andoccam compilers for
modern architectures.

1Personal experience teaching with the LEGO in the classroom.
2Conversation with David Barnes regarding the use of JCSP on the LEGO Mindstorms, University of Kent.



C.L. Jacobsen and M.C. Jadud / The Transterpreter 101

3.1 Interpreters and Emulators

The Transterpreter is not the first interpreter ofoccam that has been written. The Inmos
Portakit interpreted theoccam1 programming language, and was first released in 1984. It
was used to runoccam programs before the Transputer was commercially available. The in-
terpreters contained within the Portakit were written in several different languages, including
Pascal, BCPL andoccam1.

In the early 1990’s, Julian Highfield authored a Transputer emulator in C for the Macin-
tosh operating system running on the Motorola 68000 [8]; Highfield’s software emulates a
Transputer development board that one might have purchased from Inmos for doing Trans-
puter development. The Transterpreter, unlike either of these approaches, is intended to be
easily embedded in other applications and ported across multiple architectures.

3.2 Compilers

There are currently two tool chains available for compilingoccam programs: the Kent Retar-
getableoccam Compiler (KRoC) and the Southampton Portableoccam Compiler (SPOC).

3.2.1 KRoC: The Kent Retargetable occam Compiler

KRoC uses a heavily modified version of the original Inmosoccam compiler, and out-
puts byte-code in an extended version of the Transputer instruction set [9]. This byte-code
has been augmented with new instructions to support dynamic memory, 32 levels of pri-
ority, mobile channels, and other constructs as introduced in F.R.M. Barnes’s doctoral the-
sis [10]. This code is then further compiled to native code by a separate back-end translator,
tranx86 [11].

Currently, KRoC only produces executable code for the Linux operating system running
on the Intel x86 architecture. Although older back-end translators exist (targeting the SPARC
and other processors), they are currently out of step with the most recent versions of KRoC
and its extensions to theoccam programming language [12].

3.2.2 SPOC: Southampton Portable occam Compiler

SPOC [13] predates KRoC, and is a completely separate tool chain; SPOC’s implementation
has nothing in common with KRoC. Whereas the KRoC tool chain produces native assembly
as its output, SPOC is a high-level cross-compiler, convertingoccam programs into ANSI
C. The resulting C programs can then be compiled to binary form on a number of different
architectures using a standard ANSI C compiler.

3.2.3 Limitations of KRoC and SPOC

The latest version of KRoC does not currently produce native code for the three most com-
mon commercial operating systems in the world today: Windows, Macintosh OS X, and
Sun/Solaris.3 This is largely because of KRoC’s reliance on a complex back-end to produce
native executables from Transputer byte-code, as well as the need to port the CCSP run-time
system to each new target platform [14]. Furthermore, the resulting executable programs
must include this run-time, meaning that the size of the smallest executable program that can
be produced is 70KB.

3As KRoC is open source, it can of course be made to target these in future versions.



102 C.L. Jacobsen and M.C. Jadud / The Transterpreter

While the C produced by SPOC can be compiled to a number of different platforms, it
does not support the latest extensions4 to occam provided by KRoC, such as mobility, and
the size of the smallest possible executable on a 32-bit machine is 60KB. By comparison, the
smallest Transterpreter executable on a 32-bit machine is 20K, which is three times smaller
than the executables generated by either KRoC or SPOC.

3.3 The Transterpreter, a Portable Run-Time

In developing the Transterpreter, we have focused on addressing the limitations of the tools
currently available for running and compilingoccam programs. While the KRoC front-end
is portable, its code generator must be modified for each new platform we might want to
support. The Transterpreter is written in strict ANSI C, employing no libraries; as a result,
the Transputer byte-code output by KRoC can interpreted on any platform with an ANSI-
compliant C compiler. To ease the movement of the Transterpreter from one architecture to
another, we have made use of theautotoolssuite to make building the Transterpreter on a
new platform a simple, two-step process [15].

The choice to implement an interpreter of Transputer byte-code is in keeping with the cur-
rent trend in modern programming language implementation. Sun’s Java (JVM), Microsoft’s
C# (CLR), and Perl 6 (Parrot) all follow the same design: a compiler that targets a portable
virtual machine. This design is particularly flexible from a language implementation perspec-
tive: as KRoC continues to explore new extensions tooccam, the Transterpreter can easily
be extended to support these new language constructs, which immediately become available
on every architecture and operating system to which the virtual machine has been ported.

4 Design and Implementation

The Transterpreter replaces the current back-end of the KRoC

Interp

KRoC
frontend

Linker

Wrapper

Figure 2: The structure of
the Transterpreter

tool chain (figure 2). KRoC generates byte-codes which are then
transformed further bytranx86 ; using the Transterpreter, those
byte-codes are instead processed by the linker (see 4.2) and fed to
the Transterpreter, which interprets each instruction, simulating a
real Transputer. Around the core interpreter is a portability wrap-
per that provides operating system dependent hooks for external
channels (likekyb and scr ), timers, the loading of byte-code,
and graceful error handling.

Both the linker and interpreter have been designed with growth
and change in mind. The linker is implemented in a micro pass
architecture that can be easily be extended to support new trans-
formations of the byte-code. New instructions can be added to
the core interpreter, and all operating system specific code has
been pushed into a wrapper around the interpreter. When moving between similar (POSIX-
compliant) operating systems, minimal changes are required in the wrapper; for more spe-
cialised applications, this wrapper may change more significantly.

4.1 One Machine, Two Interpreters

The C programming language can be compiled efficiently (with regards to the size and perfor-
mance of resulting executable), but programming safely in C is difficult at best. To contend
with this reality, we have written not one, buttwo interpreters.

4As SPOC is open source, this can also be remedied.



C.L. Jacobsen and M.C. Jadud / The Transterpreter 103

Our first interpreter is written in Scheme [16]. This “interpreted interpreter” gives us a
running virtual Transputer in 1200 lines of a safe, high-level language. From a programmer’s
point of view, Scheme has a simple syntax, and by its nature we are protected from many of
the tedious, dangerous aspects of programming—memory management, pointers—faced by
developers working in C. Debugging our implementation of the Transputer’s scheduler, for
example, was made simple by the ability to easily interrupt and inspect everything about the
state of the interpreter without resorting to tools like the GNU debugger.

4.1.1 External Channels and the Foreign Function Interface

Our virtual machine is not intended to replace a host OS; as a result, we have focused on
making the ANSI C core portable by relying on the operating system and libraries compiled
into the wrapper to provide as much external functionality as possible. Both external channels
and the foreign function interface are arrays of pointers to procedures; these procedures are
intended to be implemented in the wrapper by a developer porting the Transterpreter from
one architecture to another [17, 18]. For example, the special input and output channelskyb
andscr currently make use of the standard input and output ports on Linux and OS X via
the general external channel mechanism. On the LEGO Mindstorms (running the BrickOS)
we attachscr to its 5-character LCD; both the UNIX and LEGO solutions require a minimal
amount of wrapper code. We can support an arbitrary number of external channels using this
mechanism. In the context of the Mindstorms, motors, sensors, infra-red communications,
and sound are all easily accessed via this external channel interface. Thinking more broadly
about other platforms, we can imagine attaching to network sockets, graphical user interfaces,
or a wide variety of hardware devices that are already programmatically accessible via C.

4.2 The Transterpreter Linker: a Stratified Architecture

In designing a linker that would take input from tools like KRoC and produce clean byte-code
to execute on the Transterpreter, we stratified our design to accommodate future change. This
design extends the UNIX notion of piping together two or more commands to transform data.
We have carried this notion to a logical extreme in the implementation of our linker.

Figure 3: A twenty pass linker, clearly separating out semantic concerns in the linking process

A stratified architecture is appropriate to compilers and compiler-like software. We like
to think of compilers and their supporting tools as having as many passes as necessary, where
each pass does one thing and one thing only.tranx86 , the native-code generating back-end
of KRoC, has only four passes—input, translation, optimisation, and output. In each pass,
tranx86 does many things to the instruction stream; as a result, dependancies between
instructions add significantly to the complexity of the code [11]. By comparison, we isolate
these complexities with separate micro passes, gaining conceptual clarity and sacrificing little
in run-time efficiency on modern machines.



104 C.L. Jacobsen and M.C. Jadud / The Transterpreter

5 Performance

The Transterpreter was designed to be maintainable and portable; fast execution time was
never a primary motivator in the design process. Despite this fact, the Transterpreter, as
an interpreter of Transputer byte-code, compares favourably with existingoccam imple-
mentations. First, we look at the number of source lines of code (SLoC) in KRoC and the
Transterpreter as a simple metric related to maintenance. Second, we compare the execution
of commstime [19], a commonoccam benchmark, across KRoC, SPOC, and the Transter-
preter.

5.1 Source Lines of Code

Counting the number of lines of code in the linker, the interpreter core, and portability wrap-
per, there are only 3175 lines of code in the entire Transterpreter project.5 The equivalent
combination of tools in the KRoC tool chain would be thetranx86 back-end and the CCSP
run-time, totalling 29,012 lines of code. Porting the KRoC back-end to a new architecture
means porting both of these tools, while porting the Transterpreter only requires modifying or
rewriting the wrapper, which is seventy times smaller than the KRoC 1.3 back-end (Table 1).

Table 1: SLoC foroccam implementations

Implementation SLoC
Transterpreter wrapper 416
Transterpreter core 1257
Transterpreter linker 1502
CCSP v1.6 12,480
tranx86 v0.9 16,532

5.2 Benchmarking

We have two sets of benchmarks: one set generated on an idle Sun v480 with 4GB of RAM
and two 900MHz UltraSparc III processors, and one generated on an idle Dell Optiplex
GX260 with 512MB of RAM and a 2.4GHz Pentium 4 processor. In all cases, we are com-
paring differentoccam compilers and run-times; as a result, the numbers reported are a
representative indication of performance, and should not be construed otherwise.

We chose commstime as a simple benchmark that can be run on KRoC, SPOC, and the
Transterpreter. It lets us compare two important features of anoccam run-time: the time it
takes for a context switch, and the time it takes to startup and shutdown a PAR.

5.2.1 SunOS/UltraSparc III

Table 2 shows the time required for context switches and the startup/shutdown time of a PAR
in KRoC 1.0 [9], SPOC, and the Transterpreter on a Sun v480. With a sequential delta, SPOC
runs 7 times slower than KRoC 1.0. The Transterpreter is 15 times slower than KRoC 1.0,
which means it handles a context switch roughly twice as slowly as the SPOC run-time.

The Transterpreter handles context switches much slower than the SPOC runtime; given
this, it is surprising to see that the Transterpreter is 10% faster than SPOC on PAR startup
and shutdown times. This could perhaps be explained by the difference in structure between
the two commstime executables. The Transterpreter is a 1257 line run-time interpreting an

5Numbers generated usingsloccount, http://www.dwheeler.com/sloccount/



C.L. Jacobsen and M.C. Jadud / The Transterpreter 105

Table 2: Context switch and PAR startup/shutdown times on a Sun v480

Implementation Context switch (ns) Startup/shutdown (ns)
KRoC 1.0 83 13
SPOC 1.3 572 382
Transterpreter 1245 344

array of 1249 bytes of Transputer byte-code; SPOC compiles the same version of comm-
stime into 2898 lines of C (which includes an embedded run-time). Given such differences,
anything from the efficiency of the respective schedulers to cache locality could account for
this observed performance difference; future work will explore this in greater detail.

5.2.2 Linux/x86

KRoC 1.3 has a context switch time of 114ns on our Linux/x86 test platform, and a PAR
startup/shutdown time of 22ns. With a context switch time of 618ns and a PAR cycle time of
200ns, the Transterpreter is, on average, between six and ten times slower than KRoC 1.3.

It is important to note that many new additions to theoccam programming language are
supported by KRoC 1.3 that are not supported by KRoC 1.0. These new additions include
multiple priority levels, mobile channels, and dynamic memory, all of which increase the
complexity of the run-time. Additionally, the run-time kernel is no longer hand-crafted as-
sembly; instead, it has been re-written in C [14]. These factors are the most likely explanation
for the Transterpreter’s relative “improvement” when compared to KRoC 1.3 as opposed to
KRoC 1.0.

6 Future Work

We need to achieve unit test coverage in the interpreter, and set up a test harness for running
the interpreter on a suite of test cases automatically. The authors acknowledge that this
would have ideally driven the implementation of the Transterpreter from the beginning. In
terms of growing the interpreter, we will extend the currently supported instruction set to
include KRoC’s instructions for allocating and using dynamic memory and all its 32 levels
of priority.

In addition to supporting additional extensions tooccam, we look forward to exploring
the use of our run-time on other platforms. Mobile phones, handheld devices, and other
ubiquitous computing devices are natural hosts for our portableoccam run-time.

Acknowledgments

We would like to thank Fred Barnes for his excellent work on the Kent Retargetableoccam
Compiler, his willingness to answer questions on all thingsoccam, as well as “real-time”
software development to support our needs in compilingoccam for 16-bit architectures using
the KRoC tool chain. We would also like to thank Dr. Andy King for his comments on an
early draft of this paper, our anonymous reviewers, and David Wood, who first suggested
“Transterpreter” as a historically appropriate name for our project. Lastly, thanks to our
colleagues and friends who listened (suffered) endlessly as we discussed and debated design
and implementation issues surrounding the Transterpreter. We claim all remaining errors as
our own.



106 C.L. Jacobsen and M.C. Jadud / The Transterpreter

References

[1] Inmos Limited.occam2 Reference Manual. Prentice Hall, 1984. ISBN: 0-13-629312-3.

[2] Denis A. Nicole, Sam Ellis, and Simon Hancock.occam for reliable embedded systems: lightweight
runtime and model checking. In Jan F. Broenink and Gerald H. Hilderink, editors,Communicating Process
Architectures 2003, pages 167–172, 2003.

[3] The LEGO Mindstorms homepage, 2004. http://www.legomindstorms.com/.

[4] Inmos Limited.Theoccam Portakit Implementors Guide.Bristol, November 1984.

[5] Markus L. Noga. The legos operating system, Oct 1999. http://brickos.sourceforge.net/.

[6] Peter H. Welch, Gerald H. Hilderink, and Nan C. Schaller. Using Java for Parallel Computing - JCSP
versus CTJ. In Peter H. Welch and Andre W. P. Bakkers, editors,Communicating Process Architectures
2000, pages 205–226, 2000.

[7] Matthew C. Jadud. Teamstorms as a theory of instruction. InSystems, Man, and Cybernetics, 2000 IEEE
International Conference, volume 1, 2000.

[8] Julian C. Highfield. A transputer emulator. http://spirit.lboro.ac.uk/emulator.html.

[9] D.C. Wood and P.H. Welch. The Kent Retargetableoccam Compiler. In Brian O’Neill, editor,Parallel
Processing Developments, Proceedings of WoTUG 19, volume 47 ofConcurrent Systems Engineering,
pages 143–166. Worldoccam and Transputer User Group, IOS Press, Netherlands, March 1996. ISBN:
90-5199-261-0.

[10] Frederick R.M. Barnes.Dynamics and Pragmatics for High Performance Concurrency. PhD thesis,
University of Kent, June 2003.

[11] F.R.M. Barnes.tranx86 – an Optimising ETC to IA32 Translator. In Alan Chalmers, Majid Mirmehdi,
and Henk Muller, editors,Communicating Process Architectures 2001, volume 59 ofConcurrent Systems
Engineering, pages 265–282, Amsterdam, The Netherlands, September 2001. WoTUG, IOS Press. ISBN:
1-58603-202-X.

[12] Ruth Ivimey-Cook. Legacy of the Transputer. In Barry M. Cook, editor,Proceedings of WoTUG-22:
Architectures, Languages and Techniques for Concurrent Systems, pages 197–211, 1999.

[13] M. Debbage, M. Hill, S. Wykes, and D. Nicole. Southampton’s portableoccam compiler (SPOC). In
Roger Miles and Alan Chalmers, editors,Proceedings of WoTUG-17: Progress in Transputer andoccam
Research, volume 38 ofTransputer and occam Engineering, pages 40–55, Amsterdam, April 1994. IOS
Press.

[14] J.Moores. CCSP – a Portable CSP-based Run-time System Supporting C andoccam. In B.M.Cook, edi-
tor, Architectures, Languages and Techniques for Concurrent Systems, volume 57 ofConcurrent Systems
Engineering series, pages 147–168, Amsterdam, the Netherlands, April 1999. WoTUG, IOS Press.

[15] Tom Tromey Gary V. Vaughan, Ben Elliston and Ian Lance Taylor.GNU autoconf, automake, and libtool.
New Riders Publishing, October 2000.

[16] R. Kelsey, W. Clinger, and J. Rees. The revised5 report on the algorithmic language scheme.Higher-Order
and Symbolic Computation, 11(1), Sep 1998.

[17] F.R.M. Barnes. User Defined Channels inoccam. Technical report, Computing Laboratory, University
of Kent at Canterbury, April 2002.

[18] David C. Wood. KRoC – Calling C Functions fromoccam. Technical report, Computing Laboratory,
University of Kent at Canterbury, August 1998.

[19] Peter H. Welch and Fred Barnes. Prioritised Dynamic Communicating Processes - Part I. In James Pascoe,
Roger Loader, and Vaidy Sunderam, editors,Communicating Process Architectures 2002, pages 321–352,
2002.


