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ABSTRACT

Current research in evolutionary robotics is largely focused
on creating controllers by either evolving neural networks
or refining genetic programs based on grammar trees. We
propose the use of the dataflow languages for the construc-
tion of effective robotic controllers and the evolution of new
controllers using genetic programming techniques. These
languages have the advantages of being built on concurrent
execution frameworks that lend themselves to formal verifi-
cation along with being visualized as a dataflow graph. In
this paper, we compare and contrast the development and
subsequent evolution of one such process-oriented control
algorithm. Our control software was built from compos-
able, communicating processes executing in parallel, and we
tested our solution in an annual fire-fighting robotics compe-
tition. Subsequently, we evolved new controllers in a virtual
simulation of this parallel dataflow domain, and in doing
so discovered and quantified more efficient solutions. This
research demonstrates the effectiveness of using process net-
works as the basis for evolutionary robotics.
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1. INTRODUCTION

Evolutionary robotics explores the use of genetic algo-
rithms to learn controllers for autonomous robots. Recent
surveys show that neural networks account for the basis of
approximately 40% of such controllers, while genetic pro-
gramming is used in another 30% [10]. Progress has been
made in the learning of simple behaviors such as locomotion
and obstacle avoidance [12], phototaxis [16], and searching
and foraging [13]. As research has moved to attempting
tasks involving multiple behaviors, tension has developed
between learning controllers for these complex tasks and lim-
iting the amount of a priori background knowledge used in
the learning frameworks.

We show here how process networks written in dataflow
languages can be used as a basis for evolutionary robotics,
where the level of controller complexity can be tuned. Our
work examines the creation of one such set of processes and
their subsequent evolution to improve the performance of a
robot within a task involving coordination of multiple simul-
taneous behaviors. We first describe process networks, and
then contrast them with neural networks. We next demon-
strate the use of process networks by detailing our creation
of a real world controller for a robotic fire fighting competi-
tion. This task is then abstracted into a virtual simulation,
where we employed an evolutionary algorithm using the ba-
sic control processes to improve our performance on the lo-
comotion and object avoidance aspects of the fire fighting
task. Finally, we discuss the results of this experiment, re-
lated work in evolutionary robotics, and directions for future
work.

1.1 Dataflow Languages

A robot is continuously and simultaneously engaged in
three activities: it reads inputs, computes over that data,
and controls motors and other actuators. By using a parallel
instead of a sequential language, these can be written as sep-
arate processes that execute concurrently and flow data from
one process to the next. Recent research has explored the
use of inherently parallel programming languages for writing
robotic control systems [2, 7, 17].

Parallel, process-oriented dataflow languages such as occam-
pi, Erlang, and Google’s Go are based on the Communi-



cating Sequential Processes (CSP) formalism described by
Hoare [6]. Programs are written using two main structures,
namely processes and channels. The processes involved are
self-contained sequences of computation, typically looping
forever. These processes only share data (or state) via com-
munication over well-defined channels. This allows the com-
piler and/or runtime environment of the language to guaran-
tee properties like freedom from deadlock or the absence of
race hazards, thus greatly simplifying the process of writing
concurrent programs. Another convenient aspect of these
languages is that programs can be completely represented
as a human-readable network that describes the flow of data
from one independent process to another.

1.2 From Neurons to Brains

In comparison to evolutionary systems based on neural
networks, dataflow networks can be composed of higher-
order processes that have two distinct benefits. First, the
complexity of individual nodes can be controlled and aug-
mented beyond a simple activation threshold, and second,
all stages of the evolution are understandable by humans for
inspection and refinement.

For example, success in a complex locomotion domain
could involve developing one set of behaviors to react in an
XOR fashion to two input sensors. A neural network would
need to refine the connections between individual activation
nodes across multiple layers. In a process network, the con-
nections in the neural network can be recreated as simple
threshold processes connected with channels of communi-
cation, or (alternatively) the entire XOR function can be
created as one process, to be connected as a building block
in a larger process network of other programmed functions.

Because processes and channels are the primary abstrac-
tion mechanisms in dataflow languages, processes become
the genetic material upon which evolution can act. In this
manner, we can incorporate varying amounts of prior knowl-
edge into the genome, from processes as simple as neurons,
to more complicated circuit functions, and even complete
programs for specific behaviors arranged in a complex pro-
cess hierarchy.

2. THE PHYSICAL PROVING GROUND

Each year Trinity College hosts a fire fighting home robot
contest (TCFFHRC) [1]. The purpose of this contest is
to navigate an arena, locate a candle, and extinguish it. A
sample arena is shown in Figure 1.

At the start of a trial, the robot is placed on the home
circle. The robot then has a five minute time limit to ex-
tinguish the candle placed in one of the four rooms. A suc-
cessful robot must be able to coordinate and execute the
behaviors of locomotion, object avoidance, and phototaxis,
along with some method of extinguishing the candle. Points
are awarded based on the duration of the trial and whether
the contestant chooses to participate in any optional point
multiplier challenges. Our team participated in the Senior
Division of the April 2011 contest using a system based on
the Arduino (for hardware) and occam-pi (for software).

2.1 Hardware

Our hardware was a low-cost, differential-drive platform
with a trailing caster. We used three infrared range sensors
for obstacle sensing, three (tuned) infrared diodes for flame
detection, a fan for extinguishing flame, and the commonly
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Figure 1: The TCFFHRC Competition Arena

Figure 2: The robot used in competition

available Arduino platform to handle sensor processing and
computation. Figure 2 shows our competition robot from
the rear, and Figure 3 diagrams the placement of the sensors
on the robot.

The microcontroller board we used to control our robot
was an Arduino Duemilanove® with an Adafruit Motor Shield?
attached. The Arudino is open hardware, and uses a 16MHz
processor with 32K of internal flash for program storage and
2K of RAM. The Arduino can read digital and analog inputs
(via a built-in, 10-bit ADC) and produce output through
these same pins.

2.2 Software

Our controller was hand-coded in occam-pi. Our process
network is shown in Figure 4, and the full source to our
controller is open and available for download®. We have

"http:/ /www.arduino.cc/en/Main/ArduinoBoardDuemilanove
2http://www.ladyada.net /make/mshield /index.html
3http://code.google.com /p/occam-rescue/
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two main modes: a movement and wall-avoidance mode for
wandering the arena, and a flame-detected mode for extin-
guishing the candle.

The Brain of the robot initializes the motor shield and be-
gins giving the motors commands based on signals from mul-
tiple AboveThresh and BelowThresh processes. The thresh-
old processes continuously take readings from the sensors
using the AdcGetReading process and activate the correct
motors such that the robot moves through the arena and
avoids walls.

When one of the flame sensors detects a high reading,
AboveThresh tells FlameDetected that it should send out
signals, which lets other processes know the robot is switch-
ing into phototaxis mode. The Router manages this switch
and begins listening to the ZeroInWithOne process, which
closes in on the candle using the front flame sensor by mov-
ing toward the direction where the sensor detects the most
light.

Once ZeroInWithOne gets a high enough reading, it sig-
nals the EndGame process which turns the robot 180 degrees
and starts a fan on the top of the robot to hopefully extin-
guish the flame.

2.3 Evaluation

In the TCFFHRC, each contestant is given two chances
to find and extinguish the candle. If the robot is able to
accomplish this in at least one trial, a third trial is awarded.
For our first two trials, our robot was able to find the can-
dle. In the second trial, our robot extinguished the candle
successfully, granting us a third trial.

Our robot visited most of the arena by following the right
wall. However, by using this technique the upper right is-
land room was inaccessible. Thus, if a candle was placed
in that room, the robot could not locate and extinguish it.
At the contest, the candle was placed in the island room for
our third trial. Our flame sensors were unable to see the
candle and our robot bypassed the room. Overall, our robot
placed 15" out of 41 contestants in the Senior Division, a
respectable showing for first-time contestants.

3. THE VIRTUAL PROVING GROUND

To demonstrate the utility of using process networks as a
foundation for evolutionary robotics, we implemented each
of the four possible TCFFHRC arenas in Simbad, an open-
source and easily customizable Java 3D simulator [5]. Figure
5 is an example of an arena with one possible candle place-
ment. Our simulations randomly chose one arena along with
a random candle location for each run.

Our virtual robot in Simbad closely followed the specifica-
tions of our physical robot used in competition. The motors
in Simbad simulated a two-wheeled robot, with the ability
to control the speed of each motor independently, and the
light and distance sensors in Simbad were altered to closely
match the expected range of input from the physical sensors.

3.1 Communicating Processes in Java

As Simbad is written in Java, we chose to express our
process network controller using Communicating Sequential
Processes for Java (JCSP) [18]. Using this library, we cre-
ated parallel processes for our virtual robots using message
passing as opposed to the usual threads and shared memory.
This enabled a near one-to-one mapping of our original con-
trol code into the simulator. Figure 6 shows the wallbrain
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Figure 5: A sample arena in Simbad

portion of our original occam-pi robot, now programmed
using a JCSP process network to move and avoid the walls
within the arena.

In JCSP, we recreated the AboveThresh and BelowThresh
processes, which listened to a distance or light sensor and
compared the sensor readings to a fixed threshold level. All
processes send their signals to an AltControl process, which
listens to and prioritizes the signals. This process takes the
place of and abstracts our Brain and FlameDetected pro-
cesses in the previous network so that our networks can
be more flexible. Each AltControl listens for the threshold
process signals and passes signals along to the next process
stage.

In our setup, AltControl passes an incoming signal to the
respective MotorControl process. The MotorControl process
stores the direction and speed for the left and right motor
along with the duration for the movement. All MotorCon-
trol processes feed into a MotorFinal process that guaran-
tees motors are not controlled simultaneously from separate
sources. If the MotorFinal has not received any signals, it
will perform a default behavior of moving forward for a brief
time interval.

4. EVOLVING PROCESS NETWORKS

To test the feasibility of evolving process networks, we
focused on evolving networks capable of performing the lo-
comotion and obstacle avoidance elements of the TCFFHRC
task.

4.1 Initialization

Our population was initialized to twelve randomly gen-
erated robots. Each robot in the population was given one
AltControl process. The AltControl is then augmented with
a random number of information pathways. An information
pathway can be seen as the flow of data starting from a sen-
sor, and passing through a threshold process to a particular
MotorControl (gray arrows, Figures 6, 7, and 8).

For each of these pathways, a threshold process was ran-
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Figure 6: The wallbrain portion of our competition
controller, reformulated for execution in Simbad

domly chosen by creating an AboveThresh or BelowThresh
process with a valid, random threshold level. Each thresh-
old was then connected to a particular sensor from which
to receive readings; in these experiments the possible sen-
sors were the range sensors. In this way, sensors are allowed
to send information to more than one threshold, which can
allow for complex behaviors to emerge.

Next, MotorControl processes were created for each thresh-
old. Random values are chosen for the left and right motors;
negative values turn the wheels backwards, while positive
values spin the wheels forward. The time interval for move-
ment was selected from between ten and 99 milliseconds.
This range was chosen based on our experience with the
physical robot. Finally, a MotorFinal process is created and
the MotorControl channels are connected to complete the
flow of data.

4.2 Evaluation

The contest specifies that a robot has five minutes to com-
plete the task of extinguishing the candle, with the score
based on the time used in the arena. We found this to be
an incomplete evaluation metric, where many robots would
succeed in identification of the candle but fail to extinguish
it properly, yet receive the same score as a robot that failed
to move.

To increase the learnability of the task, we wanted to track
the effectiveness of the robot scanning the whole arena. To
calculate this, we overlaid a 20x20 grid on the arena, and
recorded how many squares were left unseen at the end of
the run as a percentage of the total number of squares. This
forms the basis for our fitness function, and refer to it as the
unseen grid.

Our uniform, unseen grid was improved by adding addi-
tional emphasis when the robot visited a room as opposed
to a hallway, as candles will always be placed in rooms. The
unconnected room in the upper-right corner of the arena is
weighted even higher, since this room could not be easily
found with our hand-crafted solution. Therefore, squares
in a hallway are assigned one point, squares in the three
wall-connected rooms earn two points, and squares in the
unconnected room earn three points. Our weighted score is
then the sum of the weights on unseen squares divided by
the total of all the weighted squares, with the goal being to
minimize this score.



4.3 Selection

We used tournament selection for all of our experiments.
This incorporated the absolute ranking of the robots, as the
unseen metrics of the robots were tightly clustered. We per-
formed selection twelve times to keep our population size
constant, discarding the original population completely.

4.4 Mutation

Our mutation methods were focused on altering individual
processes or the flow of information between processes. For a
given run of the evolutionary algorithm, we chose a mutation
rate, and each mutation method in a process was performed
with that probability. This mutation rate is applied to each
individual in the selected population.

Above and Below Thresholds

Alter the level for the threshold
Listen to a different sensor

Toggle between Above and Below threshold types
AltControl

Add information pathway . Create a new Thresh-
old, MotorControl, and necessary channels to con-
nect to a sensor, the AltControl, and MotorFinal
processes.

Delete information pathway . If there is currently

more than one pathway, delete a selected channel
and pathway connected to it.

Switch pathways . Select two Thresholds and switch

which MotorControl process they activate by switch-

ing their channels.
MotorControl

Re-selected direction values for left and/or right
motor.

Reset time interval for movement to another num-
ber between ten and 99.

Figure 7 provides an example of a brain being mutated
using several of the above methods. In this example, each of
the Threshold mutation methods were executed. The left-
most BelowThresh altered its value from 1.5 to 0.3. The
rightmost threshold was mutated to listen to the RangeMid-
dle sensor rather than the original RangeLeft sensor. The
leftmost threshold originally was a BelowThresh and was
toggled to AboveThresh.

This mutation session did not Add nor Delete a pathway
from the AltControl process. However, the middlemost and
rightmost thresholds were switched to different MotorCon-
trol processes. The rightmost MotorControl’s right direc-
tion was updated from -0.8 in the original brain to 0.7 in
the mutated brain. The same MotorControl also mutated
its time interval from 56 milliseconds to 23 milliseconds.

4.5 Crossover

To perform crossover, all individuals in our selected popu-
lation were randomly paired, and then children were created
by swapping all of the information pathways connected to
one randomly chosen sensor. If one parent did not have a
pathway attached to the chosen sensor, the sensor in the
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Figure 7: Example of mutation methods on sample
brain

other parent now has no pathways. In cases when this leads
to an empty robot, it was replaced with a new randomly
generated robot.

Figure 8 demonstrates our crossover method applied to
two sample parent brains. In this example, the RangeMiddle
sensor has been selected for crossover. The first parent lacks
a pathway attached to this sensor while the second parent
has two pathways attached to RangeMiddle. This leads to
two children, the child on the left having four pathways and
the child on the right remaining with one.

S. EXPERIMENTS

Our experiments explored the effect of different mutation
rates on our process networks, and compared the best results
to our original process network written for the TCFFHRC.
We investigated two different ways to specify the amount of
mutation applied to each robot in the population:

1. We first set a mutation rate, and then applied the mu-
tation methods with this probability for each process.
We chose to vary the mutation rate from five to 45 per-
cent, increasing in increments of five. A robot could
potentially be mutated in multiple ways over one gen-
eration.
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Figure 8: Example of crossover method on two brains, where the chosen swap involves the RangeMiddle

sensor

2. To test the effects of this multiple mutation, we also
ran experiments allowing only one randomly chosen
mutation per robot.

Throughout all our experiments, we used a population
of twelve robots and ran for twenty generations, repeated
and averaged over five runs. The effectiveness of a given
robot brain was evaluated using the the weighted unseen
evaluation metric (described in Section 4.2). Due to limi-
tations in Simbad, we were forced to run our experiments
in real-time. Therefore, our experiment here used a time
limit of 60 seconds, rather than the five minute limit for a
trial at TCFFHRC. We also declared a trial complete when
the robot collided with an arena wall, because our physical
robot lacked bump sensors—a real-world crash would have
resulted in failure in the contest.

6. RESULTS

Our experiments resulted in process networks that were
more effective at covering more of the competition space
than the original human-devised solution. The most effec-
tive solutions (covering the largest portion of the competi-
tion arena) evolved both obstacle avoidance (wall following)
and locomotion (wiggling). Both behaviors are consistent
with our original solution for the TCFFHRC task.

6.1 Locomotion and Obstacle Avoidance

We found that lower mutation rates produced robots that
developed effective locomotion strategies faster. Figure 9

shows the average scores of all the mutation rates with tour-
nament selection. By inspection, low mutation rates (<
15% mutation rate per generation) appear to be different
from high mutation rates (> 15% mutation rate per genera-
tion). A one-way analysis of variance between results based
on mutation rate per generation indicated a significant dif-
ference (p-value of 0.0000013), and pairwise t-tests between
each experimental condition confirmed a significant differ-
ence between a robot evolved using 5% mutation rate per
generation and all other mutation rates.

Notably, the one mutation per brain method was initially
similar to the 5% mutation rate performance, but eventu-
ally degraded over time and did not produce statistically
significant results: some mutation (but not too much) was
good. With higher mutation, any progress toward finding a
successful network is destroyed each generation.

6.2 Improved Arena Coverage

As part of this work, we translated our occam-pi contest
solution into JCSP (Figure 6). Our contest solution achieved
a score of 0.85 in Simbad using our weighted unseen evalu-
ation metric. Guided by our previous results, we compared
the best score (lowest weighted unseen metric) from each of
the five runs of the brains evolved with five mutations/gen-
eration to our hand-crafted solution.

Figure 10 shows that, after twenty generations, the best
(evolved) solutions do as much as 10% better than our hand-
crafted solution. Controllers that achieve these scores either
(1) moved at a faster pace (spending less time wiggling and
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more time moving forward), (2) followed paths that let them
cover more ground in rooms (which are worth more in the
weighted unseen metric), or (3) moved faster and covered
ground in rooms.

6.3 A Successful Strategy: Wiggle and Avoid

We found there were two distinct movements among the
best scoring evolved robots: obstacle avoidance was achieved
through wall following and locomotion through wiggling.
Figure 11 shows one such successful evolved network. The
robots learned to use their distance sensors to follow either
the right wall or the left wall. Also, for each robot there was
some version of a wiggle motion (repeatedly moving slowly
left then right while moving forward) with the use of the
middle distance sensor. These behaviors align well with our
successful implementation for the physical TCFFHRC task.

Figure 11: Successful evolved brain for wall naviga-
tion

7. RELATED WORK

Research involving complex domains requiring multiple
behaviors is currently on the rise in evolutionary robotics.
Nelson and Grant [11] investigate a complex Capture the
Flag game, and evolve feedforward and recurrent neural net-
works in a competitive environment for this task in both
virtual and real robots. Capi [3] also uses recurrent neural
networks to learn a parallel foraging and protection task,
and find successful controllers through the use of a multi-
objective function.

Ross [15, 14] used genetic programming to evolve con-
current programs capable of solving simple mathematical
functions. Ross discusses the CCS algebra implementation,
where the language primitives are much more suitable for



mathematical functions than the complete programming lan-
guages discussed here.

Early work by Koza using a genetic algorithm to evolve a
robotic controller [8] created virtual robots which followed
the wall of an irregular shaped room. Liu and Iba [9] in-
corporated the subsumption architecture into evolutionary
robotics. They divided a cooperative task into four levels,
hand-coding some and allowing a genetic program to evolve
the rest in a hierarchical procedure. Our approach differs
from these by evolving the values of and connections be-
tween high-level parallel processes.

8. FUTURE WORK

Our current research has focused on learning process net-
works for locomotion and obstacle avoidance to successfully
complete a complex fire-fighting task. The final portion of
the task involves phototaxis (finding and extinguishing the
candle), and we are currently investigating similar evolu-
tionary methods for learning and refining networks for this
behavior. We next plan to evolve the higher-level control
structure, which will coordinate the actions of these sepa-
rate behavior networks.

With our individual wall-following brain abstracted to
read from sensors and control motors, we plan to port our
learned JCSP process networks back to the occam-pi lan-
guage for the physical Arduino framework. This will give
us insight into the alignment between our Simbad simulator
and the actual TCFFHRC arena.

We also plan to investigate the use of JCSP and our pro-
cess network framework to learn in new and more realis-
tic environments beyond the TCFFHRC. USARSim is a
robotics simulation environment based on the Unreal game
engine, and is currently used for the annual Robocup Res-
cue Virtual Simulation competition [4]. By developing an
interface layer to make the information to and from the net-
work sockets in USARSim look like our Arduino interface,
our evolutionary framework should be easily transferred to
this domain.
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