
The Flying Gator: Towards
Aerial Robotics in occam-π

Ian ARMSTRONG, Michael PIRRONE-BRUSSE, Anthony SMITH, and Matthew JADUD

Allegheny College
Meadville, Pennsylvania, 16335, USA

{armstri , pirronm, smitha7 , mjadud} @allegheny.edu

Abstract. The Flying Gator is an unmanned aerial vehicle developed to support inves-
tigations regarding concurrent and parallel control for robotic and embedded systems.
During ten weeks in the summer of 2010, we designed, built, and tested an airframe,
control electronics, and a concurrent firmware capable of sustaining autonomous level
flight. Ultimately, we hope to have a robust, open source control system capable of
supporting interesting research questions exploring concurrency in real time systems
as well as current issues in sustainable agriculture.

Keywords. aerial robotics, occam-pi, Transterpreter, Arduino, ArduPilot

Introduction

Aerial robotics platforms provide authentic, real-time environments for testing concurrent
control systems. While a ground based robot must always be on the lookout for navigational
obstacles, it can almost always stop and “look around.” Fixed-wing aerial platforms, on the
other hand, cannot stop: they must constantly (and quickly) monitor flight parameters to
maintain level flight or progress towards a goal.

The real-time challenge for unmanned aerial vehicles (UAVs) is compounded by the
large number of sensors and actuators involved in flight. A typical inertial measurement unit
(IMU) might include an accelerometer and gyroscope (for tracking an aircraft’s attitude in
three-dimensional space), a magnetometer (to serve as a compass), an airspeed sensor, and a
GPS (for position and altitude). In addition to sensing, at least one motor and three control
surfaces (for fixed-wing UAVs) must be managed as outputs. In between these inputs and
outputs are complex filtering and control algorithms that turn noisy sensor inputs into useful
information and guide the aircraft on its flight path.

In this paper we present the Flying Gator, an aerial robotics platform capable of sus-
tained level flight with a control system developed in occam-π [1]. We begin by discussing
the construction and design of the UAV, the sensing challenges in maintaining flight and
how process-oriented software design helped manage these challenges. We then compare our
work (briefly) to the ArduPilot, a popular, open-source UAV autopilot developed in C++ for
the same control hardware, and close with a brief discussion of next steps in this line of work.

1. The Flying Gator UAV

The Flying Gator is a step in an ongoing investigation regarding concurrent and parallel
control for robotic and embedded systems [2,3]. Our goal is for the Flying Gator to support
collaborative research in environmental science, serving as a platform for low-cost aerial

sensing and imaging. During ten weeks in the summer of 2010, we took our first steps down
this path, designing, building, and testing an airframe, electronics, and a concurrent control
system capable of sustaining level flight.

1.1. Airframe

The Flying Gator’s airframe satisfies a challenging range of requirements. Foremost, the
aircraft has a strong and lightweight airframe, thus maximising the Flying Gator’s potential
payload (how much it can carry beyond essential operating components). Because the aircraft
is ultimately intended to support aerial sensing, a mount was included for either a still or
video camera forward on the fuselage, in addition to the control electronics and batteries used
to power the UAV. As a research platform, the Flying Gator’s large wingspan leads to more
stable flight characteristics at low speeds, and better control in windy or gusty weather.

(a) Spar-and-rib wing construction. (b) The Gator’s fuselage construction.

(c) The Gator, complete and painted. (d) A pusher prop design.

Figure 1. The construction of the Flying Gator.

Many materials were considered while a strong, durable and lightweight airframe was
being sought after. Foam and balsa were layered throughout the build processes for the wings
and fuselage. Foam is a light and flexible materials, and is easy to use when building a low-
weight UAV. Using strategic wooden reinforcements and layers of thin balsa (still very light,
but more ridged than foam), an airframe resistant to the stresses of flight was completed.

Traditional spar-and-rib building techniques were used for the left and right wing pan-
els (Figure 1(a)). Central wooden spars were used in place of foam to allow for maximum
strength and rigidity. The fuselage was built in a similar manner, built up as a foam box with
balsa reinforcements to support the nose gear, main gear, and motor mounts (Figure 1(b)).
Further reinforcement was added to the nose of the fuselage after flight testing indicated that
landing stresses might damage the aircraft. Wooden tail booms, reinforced with carbon fiber,
provided rigidity and were easily removed for transport.

The fuselage must support a motor, a camera, and provide mounting points and pro-
tection for control electronics. The Flying Gator uses a “pusher prop” design (Figure 1(d)),
which provides an unimpeded view out of the front of the aircraft as well as increased air-
flow over the control surfaces on the aircraft (leading to better reaction times). The camera
mount not only has an unimpeded view from the nose of the aircraft, but it also provides crit-
ical weight forward of the wing to counterbalance the motor. The complete Flying Gator is
pictured in Figure 1(c), and video of radio controlled1 and autonomous flights2 are available
online.

1.2. Electronics

It was paramount that the design of our electronics system should support the operation of
the Flying Gator UAV in a manner that is safe and within regulations laid out by the United
States Federal Aviation Authority3. The guidelines can be summarised as:

1. Stay below 400’ (120m).
2. Stay away from built-up areas.
3. Maintain “pilot in command.”

Guideline number 3 means that a human operator must always be able to take control
of the aircraft at any time. Our design must, therefore, accommodate both a traditional radio
control system as well as our electronics for autonomous control—and provide a means for
switching between them.

Figure 2.: The ArduPilot Mega.

The aircraft flight electronics such as motors and
servos were typical radio control aircraft components.
A 6-channel, 2.4 GHz Spektrum radio system was
used for manual ground control, Hitec servos were
employed on all of the control surfaces, and Turnigy
components were used in the power system. Although
the Flying Gator has a large airframe, our choice of a
43mm diameter brushless electric motor provides am-
ple power to sustain flight.

Rather than developing custom control and
switching electronics, as these constitute critical safety
systems in a UAV, well-tested, open hardware solu-
tion was chosen: the ArduPilot Mega (Figure 2) [4].
This $60, 4cm x 7cm board is built around the At-
mel ATmega1280 processor. The ATmega1280 runs at
16MHz, has 128KB of flash for code and 8KB of RAM
for executing programs, and 100 pins for interacting
with the world. Of these pins, the ArduPilot Mega ex-
poses sixteen 10-bit analog-to-digital channels (criti-
cal for reading sensors) and ample pulse width modulation hardware for precisely driving
servo outputs. Most importantly, the board includes a separate ATmega328 (a smaller proces-
sor in the same family) that comes pre-configured with firmware to handle switching between
an autonomous mode (on the ATmega1280) and inputs from the ground control radio.

Our sensor input board was custom designed. We chose to use the 6DOF Razor IMU
from SparkFun Electronics [5], which incorporated the LPR530AL and LY530ALH gyro-
scopes (pitch/roll and yaw, respectively) from ST Microelectronics, and the ADXL335 three-

1Radio controlled flight: http://goo.gl/g4rfa
2Autonomous flight: http://goo.gl/hFa6C
3FAA recommendations and guidelines: http://goo.gl/EtGoz and http://goo.gl/kv7Xy

axis accelerometer from Analog Devices. The gyroscopes are capable of registering a change
of up to 300 degrees in a second, and the accelerometers are sensitive within the range of -3
to +3 gravities. Our GPS receiver (which was prototyped but not used in flight testing) used
the released Venus chipset, which typically provides better than 2.5m accuracy [6].

2. Sensing Challenges

Keeping a small aircraft in the air requires information regarding the attitude of the plane that
is constantly updated and, generally speaking, accurate. To maintain level flight, the Flying
Gator uses accelerometers and gyroscopes, the combination of which is referred to as an iner-
tial measurement unit, or IMU.4 Accelerometers use the acceleration due to gravity to help us
calculate the direction of “down,” and gyroscopes measure the rotational acceleration around
the x-, y-, and z-axes. By combining these two sets of data into one angle measurement per
axis, we can accurately calculate the plane’s attitude with respect to the horizon.

A major challenge with the sensors on an IMU is that they are exposed to a great deal
of vibration as a matter of course. The motor, which is directly attached to the airframe, is
one significant source of vibration; external conditions (gusts of wind and turbulence) are
another. Both the accelerometers and gyroscopes in the IMU are negatively impacted by the
environment in differing ways. Vibration, external forces (such as from turns), and time all
play a role in decreasing the accuracy of the sensor data being reported.

2.1. Vibration

The main source of vibration on an aircraft is from the power system. Even a well-isolated
and well-balanced electric motor is a significant source of airframe vibration. Vibrations will
always occur due to efficiency losses in the propeller, as well as issues surrounding balance:
a small motor spinning at 8000RPM, mounted to a foam-and-balsa frame, is never going to
be perfectly balanced. These vibrations affect both accelerometers and gyroscopes, and cause
variations in sensor data that must be managed by our controller.

2.2. External Forces

Ideally, our accelerometer would measure only the force of gravity, or “down.” Unfortunately,
this is not how an accelerometer works in flight: centripetal forces (generated when the air-
craft is moving in a circular path, or turning) cause accelerometers to read inaccurately be-
cause they are no longer measuring just gravity. With this extra force, it is not possible to
determine our orientation in relation to the ground solely based on the accelerometer. Gy-
roscopes are not typically affected by external forces (but are affected by vibration) as they
only measure instantaneous acceleration. For this reason, we use a combination of sensors to
augment and correct one another’s observation of the aircraft’s orientation.

2.3. Sampling Frequency

The Flying Gator is easily capable of speeds in excess of 5 meters/second (18 KPH). Our
typical flight altitude is on the order of 25 meters, meaning (ignoring gravity) that the aircraft
is capable of diving into the ground in less than five seconds. For this reason, a small aircraft
should sample its IMU at least 60 times per second, and then update control surfaces in
response to changes in position, attitude, and speed. Our initial test flights focused on level

4Our initial goal was to achieve level flight, and therefore a GPS, which provides altitude and heading, was
not employed in our initial design.

flight at a fixed speed, meaning we concerned ourselves only with processing gyroscope and
accelerometer data.

A gyroscope provides an instantaneous reading regarding the rate of rotation around an
axis. We must therefore read the sensor often and integrate to develop a meaningful gyroscope
reading regarding our attitude in 3-dimensional space. Unfortunately, gyroscopes are prone
to drift; in addition to having to read them continuously, we must also combine them with
accelerometer data to correct for their drift, which increases the number of sensors we must
monitor in our IMU.

2.4. Integer vs. Floating Point

The ATmega1280 has no floating point unit; all trigonometric and floating point operations
must therefore be emulated on this processor. The ArduPilot codebase uses floating point
mathematics, but can get away with it, because it is written in C++, which is executed na-
tively. When running occam-π programs on the Transterpreter, we take two performance hits.
Our initial implementation included trigonometric functions and floating point values for pro-
cessing our accelerometer values, which meant that we had the overhead of 32-bit floating
point emulation in both the virtual machine and the hardware. In developing processes to
handle sensor data, we began by using the occam-π FLOAT type, which (on the Arduino) is
implemented as a 32-bit value across two 16-bit registers. We were able to process our x-, y-,
and z-axes for the accelerometers and gyroscopes approximately four times per second—this
was far too slow.

Figure 3. Averaged accelerometer readings on x-axis, ADC inputs 2 and 5.

We realised, however, that (1) we did not need the level of precision that a FLOAT pro-
vided, and (2) that we could linearly map the raw analog-to-digital (ADC) readings from our
accelerometers to an orientation in degrees. To generate this map, we built a goniometer5

from two protractors, a cut down wooden ruler, and some tape. We mounted our IMU in
our goniometer, and averaged 30 ADC readings from -90 degrees to 90 degrees in 5-degree
increments on two different pins (Figure 3). Then, using linear approximations, the ADC
values could be quickly converted directly into angle values6. This improvement made our

5A goniometer is a tool for rotating an object to a specific angular position.
6Full source available at http://goo.gl/Qn1x2.

IMU-processing run approximately 40 times faster, which was fast enough for us to develop
control algorithms that would allow the Flying Gator to fly autonomously.

3. Flight and Control

Our implementation of a parallel control system for the Flying Gator UAV was a “clean room”
implementation with respect to the ArduPilot source code [7]. We did not study it extensively
or attempt to translate some/all of this code from C++ into occam-π. The ArduPilot firmware
is implemented around a single run-loop (no multithreading) and hardware interrupts, and
more than 50 global variables.

This is not uncommon in the world of embedded systems. However, this “pattern” for
software development in the embedded space is dangerous for several reasons, some of which
can be avoided when using a process-oriented language like occam-π.

Safety in communication. The ArduPilot firmware uses at least 50 global variables that rep-
resent the complete state of the aircraft. These variables are essential to an aircraft’s cor-
rect operation and, therefore, flight. It is not possible (by inspection) to say what func-
tions in the control loop modify any or all of these variables without reading through
each of them carefully, and it is possible that some future updates to the firmware will
lead to a race hazard or perhaps a crashing condition in the firmware.
In occam-π, there is no global state: every single process communicates values safely
over managed channels. Given that we are currently only developing our firmware
using the core of occam-π (or, occam2.1), we know it is impossible for us to have
global variables or encounter any of the basic race hazards when communicating values
from one process to another over a channel.

One vs. many loops. There is only one loop in the entire ArduPilot control system. This
means that no one part of the loop (e.g. function called from the loop) should take “too
long,” or it will slow the speed at which sensors are read, data is processed, and control
surfaces are updated.
Any firmware developed in occam-π will typically have many dozens of processes
running concurrently, yielding to each other cooperatively. Each occam-π process is
likely executing on a continuous basis, and could be constructed to operate when other
processes are not “busy.” We design each process to have one task, so that if we discover
an error in the operation of our control system, we can isolate the source of the error
quickly. Further, as multicore processors become more common, we are confident that
our firmware can be scaled to take advantage of this additional computational power to
good effect.

Terminal behaviour. As we developed our firmware, working with a virtual machine was
a massive boon. When crashing bugs were encountered, the Transterpreter virtual ma-
chine would report the line number where the error occurred. This alone saved count-
less hours of debugging time (compared to developing a similar system in C++), as at
no point was a debugger (like gdb) required.

While occam-π provides a great deal of safety when authoring a concurrent runtime, it
also provides tools for constructing scalable, complex systems. This leads to control systems
that look more like networks of self-contained processes that communicate and collaborate
in a way that sequential programs typically do not.

4. Architecture and Control

Our control system leverages the process-oriented nature of the programming language
occam-π. The “network” of processes executing on the ArduPilot Mega concurrently reads
from sensors, filters the data produced, makes decisions based on that data, and then drives
small motors (servos) that alter the control surfaces of our aircraft. We begin with these small
components, look how they fit into the overall picture, and close with a short discussion of
the challenges of converting noisy sensor data into useful information.

4.1. Composing a Control System

The Arduino project has a library of code based on Wiring [8], which provides high-level
convenience functions for interacting with the hardware. For example, to “turn on” digital
pin 13 on the Arduino we would write digitalWrite(13, HIGH). We contrast this with the
kind of code that is written for many microcontroller projects: bitwise twiddling of registers
that seems very complex to the novice programmer.

When programming the ArduPilot Mega in occam-π, we use a different library: Plumb-
ing7. This library provides high-level abstractions for many common interactions with the
microcontroller. In some cases, it is very similar to Wiring: digitalWrite(13, HIGH) from
Wiring becomes digital.write(13, HIGH) in Plumbing.

While some parts of the library are very similar, other parts of the library provide a very
process-oriented interface to the hardware. The servo() process is one example. A servo is
a small motor that is used for moving the ailerons, elevators and rudders8 of a small aircraft.
To drive it, a series of precisely timed pulses are sent down the wire, and the rate at which the
pulses are sent determines the degree of servo rotation. In the Plumbing library, the servo()
process provides a single channel of type SERVO, which is defined by an occam-π channel
protocol9 (Listing 1).

PROTOCOL SERVO
CASE

max ; INT
min ; INT
div ; INT
pos ; INT
usec ; INT
frequency ; INT
start
stop

:

Listing 1: The SERVO protocol.

To initialise a servo, values for minimum, maximum, and the number of divisions are
transmitted to the process; these set the limits of the servo rotation as well as the number
of divisions mapped into that range. In typical usage, values of 0, 180, and 180 provide
access to the full range of the servo in one degree increments. Once these values have been
set, the start message is sent to the servo() process, and it begins driving the servo. The
programmer can then send a series of pos messages, which will cause the servo to rotate to
and hold whatever position is communicated.

7Book and code available online at http://concurrency.cc/.
8The control surfaces of aircraft, used for effecting roll(rotation around the fuselage), pitch(up-and-down)

and yaw(side-to-side), respectively.
9To save space, all of the documentation has been removed from this protocol; we recommend viewing the

full source online—http://goo.gl/yiiDl.

LEGEND

Pin

Constant

ALTing
process

level.flight turn

mux

brain

anglespacker

servo

servo

AILERON

servo

servo

roll

pitch
or
ie
nt
at
io
n

le
ve
l

tu
rn

turning

le
ve
l

AILERON

ELEVATORELEVATOR

GYRO, ACCEL

BANK.ANGLE

Figure 4. The process network executing on the Flying Gator.

4.2. The Process Network

We highlight servo() as an example of a process-oriented interface to hardware because it
represents an encapsulation of state that is not present in the ArduPilot firmware. In contrast
to the sequential approach, our firmware encapsulates this state in a network of communicat-
ing processes (Figure 4).

Given that our initial flight tests were focused on achieving level flight, our brain()
process is very simple at the moment: it alternates between signaling for the start of level
flight and a turn, leading to a rounded-rectangle flight pattern. The angles() process reads
our sensors and filters the data, ultimately converting it into an orientation in 3-dimensional
space (Section 4.3). Our multiplexer process watches the channels coming from the brain()
and angles() processes and decides whether to signal the level.flight() or turn()

processes, which in turn actuate the servos.
Where the ArduPilot software software uses global variables that can modify the state

of the aircraft from anywhere at any time, we are guaranteed by our mux() process that only
one of turn() or level.flight() will be executing at any given time. Therefore, only
one process—responsible for turning or flying in a straight line—will be in control of the
hardware. They are mutually exclusive processes, and their exclusion is guaranteed by the
construction of our network.

4.3. Filtering

Clean and reliable sensor data is an ideal in the smooth and efficient operation of any aerial
platform. Unfortunately, as we have seen, there are myriad sources of error and inconsistency
that can effect the readings received from our sensors. Methods of data filtration that sanitise
the raw sensor readings into workable values can range from the simple to the complex. The
simplest way to filter noisy data is to average sensor readings over time. This approach may
work in some instances, but it is not based on a physical model and may let unreliable data
or outliers unduly influence our control choices. At the other end of the complexity scale is
Kalman filtering, which can become both complex in its implementation and computationally
expensive [9], especially on a resource constrained device like the ATmega1280. The Flying

Gator uses complementary filtering, a robust method that is somewhere in-between these two
extremes.

A complementary filter takes input from the accelerometers and gyroscopes and com-
bines the raw sensor readings to produce a more accurate picture of the aircraft’s orientation
in space. The filter can weight the inputs by positively or negatively biasing them. We might
do this to take into account a sensor that is inaccurate in some systematic way. For exam-
ple, we might weight gyroscopes more heavily during turns, as the accelerometers will be
affected by centripetal forces experienced during the turn.

1 PROC comp.filter (CHAN INT gyro?, accelerometer?,
2 theta!, VAL INT gain, dt)
3 INT gyr, accel:
4 INITIAL INT angle IS 0:
5 WHILE TRUE
6 SEQ
7 gyro ? gyr
8 accelerometer ? accel
9 angle := (((gain ∗ (angle + (gyr ∗ dt))) +

10 ((100 − gain) ∗ accel)) / 100)
11 theta ! angle
12 :

Listing 2: The Flying Gator’s complementary filter.

Listing 2 is our implementation10 of a complementary filter for the Flying Gator [10].
First, the processed gyroscope and accelerometer values are read into their respective vari-
ables on lines 7 and 8. On line 9 the filtering takes place. The “gain” parameter in our filtering
process allows us to trim the balance between the gyroscope and accelerometer readings: a
value of 50 would mean that each is given equal weight in our calculation. Higher values
bias the filtering process towards the gyroscope, and lower values take the accelerometer into
account more heavily. (The Flying Gator typically flew with a value of 80, biasing heavily
towards the gyroscopes.) We replicate this process for both the pitch and roll of our aircraft
(the x- and y-axes). The last line of this PROC ships the filtered angle out to wherever it needs
to be used.

Along with our complementary filter we also applied a modified Runge-Kutta method to
smooth out the gyroscope data. This implementation11 looks at past values and averages out
large, sudden, inconsistent changes in the incoming data.

Listing 3 is our implementation of a Runge-Kutta for pre-processing gyroscope data
before passing it to the complementary filter. Lines 5, 6, and 7 are where most of the work
happens. We take a weighted average of the past three averaged readings, and then combine
that value with the current reading. This eliminates any large inconsistencies in the gyroscope
data, as it is prone (in flight) to be noisy—but consistent, extreme changes (e.g. a sudden dive
due to a gust of wind) is still passed through to the rest of the control system.

5. Maintaining Flight

Knowing the limitations of our hardware, we attempted to keep our flight control processes
as simple as possible. Based on our prior experience with small aircraft, we recognised that

10Full source available at http://goo.gl/etVj9.
11Full source available at http://goo.gl/YISTx.

1 PROC gyro.filter (CHAN INT input?, rate!)
2 SEQ
3 ... initialisation
4 WHILE TRUE
5 SEQ
6 current.rate := ((current.rate) +
7 ((((filter.arr[1] + filter.arr[3]) +
8 (filter.arr[2] ∗ 2)) / 4))) / 2
9 rate ! current.rate

10 −− Cycles old values through temporary variables
11 −− and holding the last four values
12 filter.arr [0] := filter.arr [1]
13 filter.arr [1] := filter.arr [2]
14 filter.arr [2] := filter.arr [3]
15 filter.arr [3] := current.rate
16 input ? current.rate
17 :

Listing 3: Applying a modified Runge-Kutta to the gyroscope data.

there is an inverse relationship between the attitude of the plane and the servo movements
required to bring the plane back to level flight. Our implementation12 of level flight consists
of five lines of code (Listing 4).

1 PROC level.flight (CHAN IMU.DATA imu?, CHAN SERVO s, s2)
2 INT servo.pos.pitch, servo.pos.roll:
3 IMU.DATA pos:
4 WHILE TRUE
5 SEQ
6 imu ? pos
7 servo.pos.pitch := (pos[pitch] ∗
8 ((−1) ∗ PITCH.SERVO.MULTIPLIER)) + 90
9 s ! pos ; servo.pos.pitch

10
11 servo.pos.roll := (pos[roll] ∗
12 ((−1) ∗ ROLL.SERVO.MULTIPLIER)) + 90
13 s2 ! pos ; servo.pos.roll
14 :

Listing 4: The level flight “reflex.”

After reading in the filtered data from the accelerometers and gyroscopes on the imu

channel, we look at both the pitch and roll separately. We take the inverse of the angle value
from the imu and multiply it by the appropriate servo multiplier. This serves as a tunable
scaling factor for controlling how much the servo moves in response to our sensor data. We
then add 90 degrees to account for the particular orientation of the servos in the Flying Gator.

The level.flight() process serves two purposes in our code. First, it is a simple
mapping of data to control that fits naturally within a process-oriented paradigm. Second,
and more importantly, it reflects how we wish to begin thinking about future iterations of
our control system. Specifically, we have begun thinking about what flight might look like
in terms of Brook’s subsumptive control paradigm [11]. Inspired by earlier work regarding

12Full source available at http://goo.gl/C2bYx.

subsumption and occam-π, we imagine that processes like level.flight() might serve as
low-level behaviours that ultimately would (if necessary) subsume more complex behaviours
like waypoint navigation and path planning [12].

6. Future Work

The Flying Gator serves both as a platform for ongoing case studies regarding the application
of process-oriented programming to real-time robotic control as well as a research platform
in its own right. Ultimately, we hope to have a robust, open source control system capable of
supporting interesting research questions exploring current issues in sustainable agriculture.
Our interest in developing behavioural and hybrid control architectures moves us towards this
goal, as will several important, short-term goals:

Ground communications. The Flying Gator has no way of communicating with the con-
trollers on the ground. Given the low cost of low-power radio systems, it would make
sense to integrate a way for the ground controller and UAV to communicate—perhaps
leveraging a protocol like MAVLink, which is designed for this purpose [13].

Logging. In our initial designs, we did not integrate logging. Given that it is possible to inter-
face to gigabytes of storage on microSD cards very inexpensively from the ArduPilot
Mega, we will include a “black box recorder” in future revisions of our hardware and
software, for both analysis and debugging purposes.

Additional aircraft. Our entire project was executed in 10 weeks, from design, to develop-
ment, and testing. During the 9th week of our project—after two weeks of test flights—
the Flying Gator crashed. We claim that our code was not at fault, as the tail physically
broke while cruising at 25m altitude. Our control electronics survived, as did the motor
(due, in large part, to the Flying Gator’s pusher-prop design)... but our foam-and-balsa
fuselage and wings did not. Additional aircraft would both open up the doors to explor-
ing multiple agent systems as well as allow for research to continue in the event that
our aircraft experiences a sudden and unexpected loss of altitude.

Simulation frameworks. Simulators are valuable for multiple reasons. Inclement weather
and unexpected (total) aircraft failure can slow ongoing research and development.
Simulators allow for testing in extreme conditions as well as on a wide variety of
aircraft—something that is hard to do in the real world.

7. Conclusion

The Flying Gator was designed, developed, and tested over a 10-week period during the
summer of 2010. Our control system, implemented in the programming language occam-π,
allowed us to rapidly explore ideas regarding the efficient control of a small aircraft using
the ArduPilot Mega, a low-cost piece of open hardware designed for this purpose. Although
our aircraft experienced airframe failure at the end of the summer, we consider the work a
success, and intend to continue our explorations regarding concurrent real-time control of
autonomous aircraft when we complete construction of the Flying Gator II.

Acknowledgements

The Flying Gator project was supported in part by the Shanbrom Fund and the Depart-
ment of Computer Science at Allegheny College, and a grant from the Institute for Per-
sonal Robotics (http://www.roboteducation.org/). Figure 2 used with permission from
SparkFun Electronics.

References

[1] Peter H. Welch and Fred R. M. Barnes. Communicating Mobile Processes: introducing occam-π. In 25
Years of CSP, volume 3525 of Lecture Notes in Computer Science, pages 175–210. Springer Verlag, April
2005.

[2] Matthew C. Jadud, Christian L. Jacobsen, and Jonathan Simpson. Patterns for programming in parallel,
pedagogically. In SIGCSE ’08: Proceedings of the 39th SIGCSE Technical Symposium on Computer
Science Education, pages 231–235, New York, February 2008. ACM Press.

[3] Matthew Jadud, Christian L. Jacobsen, Jon Simpson, and Carl G. Ritson. Safe parallelism for behavioral
control. In 2008 IEEE Conference on Technologies for Practical Robot Applications, pages 137–142.
IEEE, November 2008.

[4] Chris Anderson and Jordi Munoz. The ArduPilot Mega. http://diydrones.com/profiles/blogs/
ardupilot-mega-home-page, February 2011.

[5] SparkFun Electronics. IMU Analog Combo Board Razor – 6DOF Ultra-Thin IMU. http://www.
sparkfun.com/products/10010, February 2011.

[6] SparkFun Electronics. Venus GPS with SMA Connector. http://www.sparkfun.com/products/
9133, February 2011.

[7] Jordi Munoz and Jason Short. The ArduPilot source. http://code.google.com/p/ardupilot/
source/checkout, February 2011.

[8] Hernando Barragán. Wiring. http://wiring.org.co/.
[9] Jeffrey A. Kramer. Accurate localization given uncertain sensors. Master’s thesis, University of South

Florida, 2010.
[10] Shane Colton. The Balance Filter: A Simple Solution for Integrating Accelerometer and Gyroscope

Measurements for a Balancing Platform. http://web.mit.edu/scolton/www/filter.pdf, February
2011.

[11] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and
Automation, 2(1):14–23, March 1986.

[12] Jonathan Simpson, Christian L. Jacobsen, and Matthew C. Jadud. Mobile Robot Control - The Subsump-
tion Architecture and occam-π. In P. Welch, J. Kerridge, and F. Barnes, editors, Communicating Process
Architectures 2006, volume 64 of Concurrent Systems Engineering, pages 225–236, Amsterdam, Septem-
ber 2006. IOS Press.

[13] Lorenz Meier. MAVLink Micro Air Vehicle Message Marshalling Library. http://qgroundcontrol.
org/mavlink/start, February 2011.

