

Identifying At-Risk Novice Java Programmers

Through the Analysis of Online Protocols

Emily S. Tabanao
Department of Information Systems and

Computer Science

Ateneo de Manila University

Quezon City, Phillippines

emilytabanao@yahoo.com

Ma. Mercedes T. Rodrigo
Department of Information Systems and

Computer Science

Ateneo de Manila University

Quezon City, Phillippines

mrodrigo@ateneo.edu

Matthew C. Jadud
Franklin W. Olin College of

Engineering

Needham, MA, 02492 USA

 matthew.c@jadud.com

ABSTRACT
Learning to write a program is a difficult task. In this study we

looked at how students progress as they write their programs.

Using an instrumented development environment, we captured the

errors students encountered, the location of these errors, and the

frequency with which students compiled their program. We then

correlated these metrics with the students’ midterm exam score.

We found that the lower the incidence of syntax errors, the higher

is their midterm exam score. We see this line of research as

valuable tool that may help identify at-risk students early in their

development as programmers.

Keywords
Novice programmers, Java, computer science education.

1. INTRODUCTION
 Computer science educators are growing increasingly

concerned over the lack of programming comprehension of first-

year computer science students. Novice programmers exhibit a

variety of disturbing problems. In Australia, as many as 35% of

students fail their first programming course. In the United

Kingdom and the United States, approximately 30% of computer

science students did not understand programming basics by the

end of this first class [18]. Studies have found that novice

programmers could not write syntactically correct programs even

after their first programming course [7, 18, 24]. Novice

knowledge was limited and shallow. Students lacked detailed

mental models and tended to organize knowledge based on

superficial similarities. They failed to apply relevant knowledge.

They used general problem solving strategies instead of problem

specific or program specific strategies, and approached

programming "line by line" rather than at the level of meaningful

program structures [25, 33]. Novices were poor at program

comprehension and in tracing their code [22]. They had a poor

grasp at how a program executes. They also had problems with

understanding that each instruction is executed in the state that has

been created by the previous instructions [5].

 As a response to these findings, Computer Science educators

and researchers conducted studies to recognize the characteristics

of novice programmers, determine the causes of their problems

and to find possible solutions. Various methods have been used in

the study of novice programmers in the past.

 One of these methods is the collection and analysis of online

protocols. Online protocols refer to a sequence of program

compilations. They are gathered by enhancing the development

environments used by students to write, compile and test their

programs to such that each compilation attempt stores the source

code and related information—e.g. error message, the line number

where the error occurred, and the time the compilation occurred—

in a database. These data allow researchers to look into the

students’ progress as they write their programs, identify

common errors and behavior [1, 9, 10, 11, 16, 30, 32].

 The goal of this study is to determine whether an analysis of

online protocols can successfully identify at risk-novice Java

programmers. From the online protocols, we quantify the

compilation behavior of the student by computing what Jadud

calls as the error quotient (EQ) [9]. We also derive the errors

encountered and time between compilations from the data logs.

We then correlate the EQ, errors encountered and time between

compilations to the student’s achievement in class, particularly

their midterm exam scores. A significant result from this

correlation may allow almost accurate identification of at risk

students in a novice programming class.

1.1 Significance of the Study
 This paper would like to answer the following questions: Can

online protocols identify and characterize at-risk novice java

programmers? Is there a relationship between errors encountered

and students’ achievement in class? What errors do students

commonly encounter? What is the pattern of students’ program

compilation? Answers to these questions can have several

potential benefits in the field of Computer Science Education.

Identifying at-risk students early in the semester can help

educators provide targeted help and proper intervention to those

who need it most. By knowing the errors typically students are

making and the time it takes them to fix these errors, educators

can better address concepts that students find difficult to grasp or

misconceptions. Even a simple error like a missing semi-colon

can be very difficult for a novice to correct. An error that takes a

large amount of time to correct can be very frustrating. The EQ

score can tell who among the students are struggling with syntax

errors, prompting teachers to intervene to mitigate frustration.

Spotting at-risk students early may also help reduce the dropout

rates in computer programming classes.

2. REVIEW OF RELATED LITERATURE
 Much of the research regarding novice programmers

explores the difficulties they encountered while learning to

program. Our focus here will be on the research that explores the

challenges novices face while learning to program.

2.1 The Difficulties of Programming

 Learning to program is not easy. A number of studies have

been carried out on what makes programming difficult.

Researchers found that the difficulty might be caused by a lack of

a mental model [2, 21, 28, 23], misconception of programming

constructs [7, 13, 15, 20, 29], lack of programming strategies [3,

7, 26, 29, 33] and/or lack or absence of debugging strategies [1,

14].

 This literature informs our analysis of the behavior of novice

programmers, but does not directly address our fundamental

question of how to identify at-risk students and, later, how we can

intervene to guide them towards greater comprehension and

retention. Through this research undertaking, we hope to shed

more light on the errors that novices commit and the compilation

behaviors they exhibit that may be indicative of poor

understanding of the subject matter. These findings may later

help us prescribe interventions that may promote better learning.

2.2 Common Errors Encountered
 A number of studies have that looked at novice programming

errors. Hristova and her team (Hristova, et al., 2003) conducted a

survey among teaching assistants, professors and students from

different schools in the United States and the members of the

Special Interest Group for Computer Science Education

(SIGCSE). Results from faculty and students were combined and

divided into three categories: syntax errors, semantic errors and

logical errors. A total of 62 error types were reported and they

identified the top 20 from the list. It is noted that syntax errors are

prevalent making 65% of the top 20 errors.

 The studies of Jackson et.al and Jadud both collected online

protocols in their studies. Students were taught Java. Table 1

identifies the top ten errors in Jackson’s study [9] and Table 2

identifies the top five errors in Jadud’s study[10].

Table 1. Top ten errors in Jackson’s study

Rank Error Percentage

1 cannot resolve symbol 14.6

2 ; expected 8.5

3 illegal start of expression 5.7

4 class or interface expected 4.6

5 identifier expected 4.5

6) expected 3.8

7 incompatible types 2.8

8 Int 2.5

9 not a statement 2.5

10 } expected 2.3

 Total 51.8%

Table 2. Top five errors in Jadud’s study

Rank Error Percentage

1 missing semicolon 18%

2 unknown symbol: variable 12%

3 bracket expected 12%

4 illegal start of expression 9%

5 Unknown symbol: class 7%

 Total 58%

 A comparison of both table shows that students beginning to

program in Java seems to encounter almost the same error types.

Most of these errors are syntax errors. These result confirms what

Soloway and Spohrer concluded in their study: A few types of

error accounts for the majority of errors dealt with by students

[29]. The top ten errors comprised more than 50% of all the

errors encountered.

3. THEORETICAL FRAMEWORK
How do novice programmers confront compile-time errors? Do

they search their code for errors? Do they seek help from their

notes, their peers or their teachers? Do they adopt a trial-and-error

method of experimentation? Or do they give up?

 Perkins, et al. [21] classified students into three stylistic

categories: Stoppers, Movers, and Extreme Movers. Movers are

students who persisted in experimentation and testing. They try

one solution after another, using feedback effectively to progress

in their programming tasks. Eventually, Movers succeed in

arriving at a solution.

 At the opposite end of the spectrum are the Stoppers.

Stoppers are students who are unable to proceed because they

have simply given up. These tend to be students who are

frustrated or else had negative experiences with programming.

They are unsure of themselves and lack confidence in handling

the programming language and are not confident about how to get

the machine to do what they need it to do.

 Extreme Movers are those who tend to ignore feedback or

use it ineffectively. They make program changes at random and

hence do not progress effectively in their programming tasks.

They tend to move around in circles or else go from one

unworkable course of action to another, instead of moving

progressively towards a real solution.

 These classifications of programmer behaviors are of interest

to computer science educators because they afford us with the

opportunity to diagnose learning or non-learning behaviors and

possibly intervene in order to promote greater learning. We are

especially concerned with at-risk novices who may well decide to

disengage from information technology-related courses altogether,

opting instead for something less technical in nature. The

challenge is to formalize these classifications into computationally

tractable models.

 Having observed that students frequently encounter syntax

errors, Jadud was able to quantify the compilation behavior of

students in a given session. The type of syntax error that had been

made and how often it had repeated is an indicator of how well or

poorly a student was progressing. A penalty was assigned to

behaviors that did not move a student towards the goal of having

an error-free code.

 Jadud developed a quantification of the student's compilation

behavior through a grounded theoretic process. He called it the

error quotient or EQ. Every record in the data logs represents one

compilation event. Stored in each record is the error message if

there was an error at the time of compilation, the location of the

error in the file which is reported by the compiler as a line

number, and the source code. To compute the EQ, we get the

error message, the line number and the text of the source code.

Given two compilation events, we compare if the error message is

the same, are the line numbers the same, and the source code if

the edit location is the same. Every pair of compilation event gets

a normalized score and then averaged to get the final EQ score of

the session.

 The EQ characterizes how much or how little a student

struggles with syntax errors while programming. An EQ score is

of the range 0 to 1.0, where 0 is a perfect score. An EQ score of 0

does not mean that the student made no syntax errors in their

programming process. What it means is that at no point did the

students encounter the same syntax error on two successive

compilations of their program. Whereas a session scoring 1.0

means that every compilation resulted to the same syntax error all

the time. Jadud's EQ will be used in scoring compilation

behavior of novices in this study.

 From the online protocols of the students, we shall extract

the errors encountered, time between compilations and compute

the EQ score. Correlation will be used to determine significant

relationships among these three variables. Together with class

achievement, we hope to identify at-risk students in an

introductory programming class.

4. METHODOLOGY
 This study was conducted in the Department of Information

Systems and Computer Science (DISCS) of the Ateneo de Manila

University on the First Semester of School Year 2007-2008. The

participants of this study are the students enrolled in CS21 A-

Introduction to Computing I, popularly called CS1 in the

literature. A total of 143 students agreed to participate in the

study, 17% were female and 83% were male. The DISCS have

seven computing laboratories that also serve as lecture rooms. The

CS 21A classes were held in three of these laboratories. The

machines are connected in a local area network and the Internet.

All the machines were installed with the same operating system,

Java standard development kit and BlueJ.

 Students in this study used BlueJ in performing their

programming exercises. BlueJ is an integrated Java environment

specifically designed for introductory teaching. The aim of BlueJ

is to provide an easy-to-use teaching environment that facilitates

the teaching of Java to students learning to program. To check for

errors in a program, in the text editor students will simply click on

the Compile button or press the keyboard shortcut for invoking

the compiler. So as not to overwhelm beginners with error

messages, BlueJ only shows one syntax error at a time. The line

in question is highlighted, and the error message is reported at the

bottom of the editor window.

 Five laboratory exercises were designed to be performed by

all the students on their scheduled laboratory day. Data was

collected on this laboratory exercises. The exercises were

designed to be finished in a one hour laboratory session. The

exercises were given to the students on the day of their scheduled

laboratory. A driver program is given in each exercise for the

students to test their code.

4.1 Tools for Data Collection
The tool used in data collection was developed by Matthew Jadud

and Poul Henriksen at the University of Kent. The data

gathering tool is implemented as an extension to the BlueJ

programming environment. BlueJ offers an extension API that

allows third parties to develop extensions to the environment.

Extensions offer additional functionality that are not included in

the core system. In this study, the extension added to BlueJ sends

data to the server whenever the user clicks the Compile button.

Figure 1 shows a diagram of the data collection configuration.

Figure 1. Data Collection Configuration

 The focus of this study is on the compilation activities of the

students inside the BlueJ environment. Each time the Compile

button is clicked, BlueJ sent data to the server.

4.1.1 Databases
 BlueJ stores data in two tables in an Sqlite database1:

CompileData and InvocationData. The CompileData

table allows us to answer questions about student compilation

behavior in the BlueJ programming environment. The

InvocationData table stores data when a student invokes or

executes a program. This study will focus on the

CompilationData table only.

 4.1.2 The CompileData Table
 A compilation event data is captured every time a student

clicks the Compile button in the BlueJ IDE. Table 3 describes the

fields of the CompileData table that will be extracted and used

for data analysis.

Table 3. Description of fields used in data analysis

 Field Description

SESSION_ID a number generated by the data

gathering program to identify a

programming session

DELTA_START_TIME the time the compile button is

pressed
DELTA_END_TIME the time the compiler finished

compiling
FILE_NAME the name of the file compiled
FILE_CONTENTS the contents of the compiled file

COMPILE_SUCCESSFUL Stores the value 1 if the compiler

did not encounter an error,

otherwise a 0 is stored,

MSG_TYPE the type of message generated by

the compiler: ERROR if an error

was encountered, WARNING if a

warning was encountered

MSG_MESSAGE the error message generated by the

compiler
MSG_LINE_NUMBER the line number where the error

was encountered, -1 if there was no

error

1
 SQLite is a small C library that implements a self-contained,

embeddable, zero-configuration SQL database engine. SQlite is

freely available at http://www.sqlite.org.

Online

Protocol

Errors, EQ,

Time

Between

Compilation

s

At-risk

novice

program-

mers

Class

achievement

(Midterm

Exam)

4.2 Procedure
 On the first day of classes students were informed about the

study. A consent letter was given to each of the students where

they affixed their signature and the signature of their

parent/guardian if they were willing to be part of the study. They

were not obliged to join the study. They did not need any kind of

preparation or follow any procedure during the study itself. All

they had to do is attend their classes, complete the laboratory

exercises, and behave as normally as possible.

 Data gathering of the compilation logs was completely

automated. Data was gathered only on the scheduled laboratory

schedules when the standard exercises were given. The laboratory

session lasted for an hour to one hour and a half. The lab

exercises followed the lectures of the topics covered in the

exercises. The data was collected on the first nine weeks of the

First Semester of School Year 2007-2008.

4.3 Data Analysis
 After all the data was gathered, the data was cleaned. Fields

necessary for data analysis was extracted. The EQ per student was

computed using these fields. The results of the EQ were then

correlated with the students’ midterm and final exam scores.

4.3.1 Data Cleaning
 When the server is turned on, all events inside BlueJ are

captured. Sometimes students work on sample programs before

working on their assigned laboratory exercises. All compilations

and invocations on those sample programs were captured by the

server.

 Data recorded that were not part of the data to be collected

were removed from the database. These data were removed

manually using SQlite Administrator. Each database of each

student per lab exercise needed to be opened and cleaned

individually. The field FILE_NAME was used to identify records

that were removed. In all the laboratory exercises, the students

are told explicitly what will be the filename of the programs that

they will create. A filename that is not required in the laboratory

exercises was a candidate for removal.

4.3.2 Data Extraction
 Not all fields in the compile data table were used for data

analysis. The following fields were extracted from the database

for use during the data analysis: SESSION_ID,
DELTA_START_TIME, DELTA_END_TIME,

FILE_NAME, FILE_CONTENTS,COMPILE_SUCCESSFUL,

MSG_TYPE, MSG_MESSAGE, MSG_LINE_NUMBER.

 The extracted data were stored in a text file which was later

used in generating summaries.

4.3.3 Generating Summaries
 To answer our research questions we generated the following

summaries from the data extracted. In generating these

summaries, we created Java programs that read the data from the

text files, store the data to a corresponding Java class and generate

the summaries.

1. A frequency count of compilation errors encountered

a. Per class or section
b. Over all laboratory exercises

 The count of compilation errors encountered showed which

programming constructs the students had difficulty using. From

the individual count, we could identify which students were

struggling with what type of errors. From the class count, we

could quantify the progress of the class as a whole in terms of

how good they were at resolving compilation errors. From the

laboratory exercise count of all classes or sections, we could see

which types of errors the participants were struggling with in

relation to the exercise they were performing. Finally, the overall

count of compilation errors covered all errors encountered in all

laboratory exercises of all participants.

2. A frequency count of time between compilations

a. Per Laboratory Exercise
b. Overall laboratory exercises

 Time between compilations was computed by subtracting the

DELTA_START_TIME of every record in the database with the

same SESSION_ID. The time computed was stored in ten second

bins, to produce the number of compilations in every ten second

interval.

3. Computation of the error quotient of each student

a. Per laboratory exercise
b. Over all laboratory exercises

 The following is the algorithm for calculating the error

quotient of a session, illustrated in Figure 2. Given a session of

compilation events e1 through en:

1. Collate Create consecutive pairs from the events in the

session, for example, (e1,e2),(e2,e3)...(en-1,en).

2. Calculate Score each pair according to the algorithm

presented in Figure 2.

3. Normalize Divide the score assigned to each pair by 9 (the

maximum value possible for each pair).

4. Average Sum the scores and divide by the number of pairs.

This average is taken as the error quotient (EQ) for

the session.

Figure 2. To calculate the error quotient of a session, each

pair of events is first scored using this algorithm. Those

values are then summed and normalized, assuming a

maximum score of 9 per pair.

4.3.4 Determining Significance of Results
 After getting the errors encountered, time between

compilation and EQ scores, we used Pearson’s correlation to

determine whether:

• there is a relationship between student's EQ score and

achievement in class

 The student's achievement in midterm exam and final exam

is used in correlating with their EQ score.

5. RESULTS
The tools that we use for data collection allowed us to capture a

copy of the student’s work in progress every time they compiled

their code. In the five laboratory sessions that we gathered data, a

total of 28,386 compilation events were collected.

5.1 Errors Encountered
Of the 28, 385 compilation events that we collected,59% or a

total of 16, 631 compilation events generated an error. Table 4

lists the top ten errors encountered and their percentage.

Table 4. Top Ten Errors Encountered

Error Type Percentage

1. cannot find symbol - variable 20%

2. ';' expected 13%

3. ')' or ')' or'[' or ']' or '{' or '}' expected 10%

4. missing return statement 8%

5. cannot find symbol - method 6%

6. illegal start of expression 6%

7. incompatible types 4%

8. <identifier> expected 4%

9. class, interface, or enum expected 3%

10. 'else' without 'if' 2%

Total 76%

 There were a total of 52 different error types encountered. It

is noted that the top ten errors account for 76% of all these errors.

This means that majority of the students’ time is spent correcting

only a few different error types . Comparing this result to that of

Jackson [9] and Jadud’s [10] study shows that our subjects are

encountering similar errors in their programming.

5.2 Time Between Compilations
The time between compilations gave us an idea of how much time

students spent correcting or editing their code. Each bar in the

histogram of Figure 3 shows time between compilations in every

ten seconds window; 55% of all compilation events occurred in

less than 30 seconds after the previous event. We question

whether rapid-fire compilation is a quantitative description of

Perkins, et al.’s [21] definition of Extreme Movers, and therefore

indicative of a non-learning behavior. We can also see that, 15%

of the time, students spend up to two minutes working on their

code between compilations. We again question whether this time

lag is a quantification of Movers’ behavior and whether it implies

careful examination and reflection upon code. These are questions

that we will explore in future work.

Figure 3. Time between compilations, 10 second bins

5.3 Error Quotient (EQ)
The error quotient is a measure of how many syntax errors a

student encountered during a laboratory session. Students who

encountered many syntax errors and failed to fix them from one

compilation to the next, end up getting high error quotient. It gets

even higher if an error persists successively in every compilation.

On the other hand, students who have few syntax errors, or who

correct their syntax errors quickly will end up with low error

quotients. In other words, the higher the EQ score the more the

student struggled with syntax errors and the longer it took them to

correct the errors. The lower the EQ score, the better the student

at correcting syntax errors.

 We took the mean EQ score of the participants in five lab

seesions: the lowest EQ score is 0.10 and the highest EQ score is

0.46. Figure 4 shows the percentage of the number of students

getting an EQ score at intervals of 0.1: 23% got at an EQ score in

the range >0.1-0.2, 38% in the range >0.2-0.3, 36% in the range

>0.3-0.4, and 3% in the range >0.4-0.5.

Figure 4. Distribution of EQ Scores

We then correlated the mean EQ score with the midterm exam

scores and arrived at a correlation value R = -0.54 with p-value <

0.001. This is a significant result, implying that the lower the EQ

score, the higher the midterm exam score of the student. The

value of R means we have a moderate correlation between the EQ

score and the midterm exam score. What this suggests is that the

errors our students are encountering are not all intentional. Some

of the errors encountered were not caused by students’

misunderstanding. Some of these errors could be due to

carelessness. Even expert programmers can sometimes forget to

type a semicolon at the end of a statement.

6. DISCUSSION
 As the error analyses showed, only a small number of errors

accounted for the majority of errors encountered. Most of the

error types were syntactic in nature. These were simple errors

which may be due to the fact that students were not yet used to

writing programs and were not yet very familiar with the syntax.

First on the list is cannot find symbol-variable. There are several

possible explanations for this:: first, Java is case sensitive. The

student may have capitalized a variable or a part of a variable

while coding. Second, students tended to forget to declare

variables first before using them.

 The second most common error was missing semicolon.

Beginning programmers often forget to put semicolon at the end

of a statement. However, this error could mean something else.

A semicolon may not have been expected at all. This may have

been caused by a missing opening brace.

 The third most common error is forgetting to pair a

parenthesis, or bracket or a brace. A missing parenthesis though

may not literally mean that a parenthesis is missing. It can be a

missing argument or improper use of a method.

 Though it may seem that the top three errors are simple,

Jadud [11, 12] found that a missing semicolon can take to as much

as thirty minutes or more for a novice to correct. The studies of

[10] and [14] show that some students waste a considerable

amount of time correcting syntax errors. This must be addressed

because students can get disheartened getting errors every time

they compile which may lead to frustration in programming. One

possible way of improving the debugging ability of novices is to

inform them of the common errors encountered by beginning

programming students and discuss to them when these errors

occur and how to solve them.

 With regards to compiling behavior, it was surprising to see

how quickly students compile their programs. It seemed that

students were not giving much thought on their code between

compilations. More than 50% of the compilations happened in

less than 30 seconds of the previous compilation. This implied

that students engaged in a certain amount of trial-and-error.

Whether this is indeed the case is the subject of our future work.

Among other things, we will need to note what type of error

occurred and whether it was corrected or whether it persisted.

 Interestingly enough, the tail of the histogram shows that

15% of the compilations happened two minutes after the previous

compilation. A closer examination of this phenomenon is also

part of future work. Among other things, we will need to note

whether there was a large or small edit distance between the

complied files. We will also correlate time between compilations

and grades. Perhaps students with shorter compilation cycles

have poorer grades knowing that they do not give much thought to

the code before compiling it again.

 Finally, the correlation of the EQ score and midterm exam

score was significant based on its p-value. This meant that

students with high EQ struggled with syntax while learning to

program. Although this may seem an obvious result, it should be

noted that the context of this study is to use EQ as a real-time

diagnostic. This finding suggests that it might be possible to

compute the EQs of students during their lab work and then use it

as a basis for identifying at-risk students even before the

midterms.

7. CONCLUSION
Most novices find programming difficult. In this study we

attempted to understand students programming difficulties by

capturing and analyzing our students’ online protocols while

performing their laboratory exercises. From their online protocols

we derived the errors they encountered, computed for the time

between compilations, and computed their Error Quotient (EQ),.

So far, we have learned what are the errors commonly

encountered by our students and how often they compile their

programs. Further analysis will be done to know how long it took

the students to correct these errors and correlate with their exam

scores. We want to find out if there is a relationship between the

errors encountered and the student’s achievement in class. We

also want to find out if there is a pattern of error-types that

identifies at-risk novice Java programmers. And lastly, we want to

know if there is a relationship between time between compilations

and the students’ achievement in class.

We found that students who have high EQ scores tends to get

lower midterm exam scores. In other words, students who are

getting high EQ scores are those who may need some help. They

could be struggling and may be at-risk of failing in programming.

The findings from this study leads to other questions for

further examination: is there a correlation between time between

compilations and student achievement? Do low-performing

students and high-performing students encounter different sets of

compile-time errors? Based on EQ, errors, and time between

compilations, is it possible to establish a computationally tractable

profile of Stoppers, Movers, and Extreme Movers? Finally, can

these models be used to help identify and assist at-risk students

early in the semester? By spotting at-risk students early and

providing them needed intervention and help, CS Educators may

reduce the drop-out rates of their programming classes.

8. ACKNOWLEDGEMENT
The authors thank Christine Amarra, Andrei Coronel, Jose

Alfredo de Vera, Sheryl Lim, Ramon Francisco Mejia, Jessica

Sugay, Dr. John Paul Vergara and the technical and secretarial

staff of the Ateneo de Manila’s Department of Information

Systems and Computer Science for their assistance with this

project. We thank the Ateneo de Manila’s CS 21 A students,

school year 2006-2007, for their participation. Finally, we thank

the Department of Science and Technology’s Philippine Council

for Advanced Science and Technology Research and

Development for making this study possible by providing the

grant entitled “Modeling Novice Programmer Behaviors Through

the Analysis of Logged Online Protocols.”

9. REFERENCES
[1] Ahmadzadeh M., Elliman D. and Higgins C. ,"An analysis

of patterns of debugging among novice computer science

students", Proceedings of the 10th annual SIGCSE

conference on Innovation and technology in computer

science education. - New York, NY, USA , ACM Press,

pp. 84--88. 2005.

[2] Ben-Ari M. "Constructivism in computer science

education," ACM Press New York, NY, USA, Vol. 30.

1998.

[3] Byckling P. and Sajaniemi J. ,"Roles of variables and

programming skills improvement," Proceedings of the

37th SIGCSE technical symposium on Computer science

education, ACM Press New York, NY, USA, pp. 413--

417, 2006.

[4] Chmiel R. and Loui M.C., "Debugging: from novice to

expert", Proceedings of the 35th SIGCSE technical

symposium on Computer science education. - NY, USA :

ACM Press New York, pp. 17--21, 2004.

[5] du Boulay B. ,"Some difficulties of learning to program",

Journal of Educational Computing Research, Vol. 2. pp.

57--73, 1986.

[6] Ducasse M. and Emde A.M. ,"A review of automated

debugging systems: knowledge, strategies and techniques",

Proceedings of the 10th international conference on

Software engineering. - Los Alamitos, CA, USA : IEEE

Computer Society Press, pp. 162--171, 1988.

[7] Garner S., Haden P. and Robins A. ,"My program is

correct but it doesn't run: a preliminary investigation of

novice programmers' problems", Proceedings of the 7th

Australian conference on Computing education. -

Darlinghurst, Australia : Australian Computer Society,

Inc., Vol. 42. - pp. 173--180, 2005.

[8] Hristova M. [et al.] ,"Identifying and correcting Java

programming errors for introductory computer science

students", Proceedings of the 34th SIGCSE technical

symposium on Computer science education. - New York,

NY, USA : ACM Press, pp. 153--156, 2003.

[9] Jackson J., Cobb M. and Carver C. ,"Identifying top java

errors for novice programmers ", Proceedings of the

35thASEE/IEEE Frontiers in Education Conference. -

Indianapolis, USA : [s.n.], 2005.

[10] Jadud M.C. ,"A First Look at Novice Compilation

Behaviour Using BlueJ",Computer Science Education. -

[s.l.] : Taylor & Francis, - 1: Vol. 15. - pp. 25--40, 2005.

[11] Jadud M.C. ,"Methods and tools for exploring novice

compilation behaviour", Proceedings of the 2006

international workshop on Computing education

research. - New York, NY, USA : ACM Press, pp. 73--84,

2006.

[12] Katz I.R. and Anderson J.R. ,"Debugging: An Analysis of
Bug-Location Strategies ", Human-Computer Interaction. -

[s.l.] : Lawrence Earlbaum, - 4 : Vol. 3. - pp. 351--399,

1987.

[13] Kay J. [et al.] ,"Problem-Based Learning for Foundation

Computer Science Courses", Computer Science

Education. - [s.l.] : Taylor & Francis, - 2 : Vol. 10. - pp.

109--128, 2000.

[14] Kummerfeld S.K. and Kay J. ,"The neglected battle fields

of syntax errors ", Proceedings of the fifth Australasian

conference on Computing education. - Darlinghurst,

Australia : Australian Computer Society, Inc., pp. 105--

111, 2003.

[15] Lahtinen E., Ala-Mutka K. and Jarvinen H.M. ,"A study of

the difficulties of novice programmers ", ACM SIGCSE

Bulletin. - New York, NY, USA : ACM Press, - 3 : Vol.

37. - pp. 14--18, 2005.

[16] Lane H.C. and VanLehn K. ,"Coached Program Planning:

Dialogue-Based Support for Novice Program Design ",

Proceedings of the SIGCSE 2003. - New York, NY, USA :

ACM Press, pp. 148--152, 2003.

[17] Lewandowski G. [et al.] ,"What novice programmers don't

know ", Proceedings of the 2005 international workshop

on Computing education research. - New York, NY,

USA : ACM Press, pp. 1--12, 2005.

[18] McCracken M. [et al.] ,"A multi-national, multi-

institutional study of assessment of programming skills of

first-year CS students ", Annual Joint Conference

Integrating Technology into Computer Science

Education. - New York, NY, USA : ACM Press, pp. 125--

180, 2001.

[19] McKeown J. and Farrell T. ,"Why We Need to Develop

Success in introductory programming courses", CCSC--

Central Plains Conference. - Maryville, MO : [s.n.], 1999.

[20] Milne I. and Rowe G. ,"Difficulties in Learning and

Teaching Programming—Views of Students and Tutors",

Education and Information Technologies, - [s.l.] :

Springer, - 1 : Vol. 7. - pp. 55--66, 2002.

[21] Perkins D.N., Schwartz S. and Simmons R. ,"Instructional

strategies for the problems of novice programmers",

Teaching and Learning Computer Programming: Multiple

Research Perspectives. - Hillsdale, NJ : Lawrence

Erlbaum Asociates, pp. 153--178, 1988.

[22] Perkins DN ,"Conditions of Learning in Novice
Programmers", Journal of Educational Computing

Research. - 1 : Vol. 2. - pp. p37--55, 1986.

[23] Ramalingam V., LaBelle D. and Wiedenbeck S. , "Self-

efficacy and mental models in learning to program",

Proceedings of the 9th annual SIGCSE conference on

Innovation and technology in computer science

education. - New York, NY, USA : ACM Press, pp. 171--

175, 2004.

[24] Ratcliffe MB , "Improving the Teaching of Introductory

Programming by Assisting the Strugglers ", The 33rd ACM

Technical Symposium on Computer Science Education. -

Cincinnati, USA : [s.n.], 2002.

[25] Robins A., Rountree J. and Rountree N. , "Learning and
Teaching Programming: A Review and Discussion",

Computer Science Education. - [s.l.] : Taylor & Francis, -

2 : Vol. 13. - pp. 137--172, 2003.

[26] Sajaniemi J. and Kuittinen M. , "An Experiment on Using

Roles of Variables in Teaching Introductory

Programming", Computer Science Education. - [s.l.] :

Taylor & Francis, - 1 : Vol. 15. - pp. 59--82, 2005.

[27] Sanders K. and et.al , "A multi-institutional, multinational

study of programming concepts using card sort data ",

Expert Systems. - [s.l.] : Blackwell Publishing, - 3 : Vol.

22. - pp. 121--128, 2005.

[28] Sleeman D. [et al.] ,"An Introductory Pascal Class: A Case

Study of Students' Errors", Teaching and Learning

Computer Programming: Multiple Research

Perspectives. - Hillsdale, NJ : Lawrence Erlbaum

Asociates, pp. 237--257, 1988.

[29] Spohrer J.C. and Soloway E. , "Novice mistakes: are the

folk wisdoms correct?", Communications of the ACM. -

New York, NY, USA : ACM Press, - 7 : Vol. 29. - pp.

624--632, 1986.

[30] Spohrer J.G. and Soloway E. "Analyzing the high
frequency bugs in novice programs ", Papers presented at

the first workshop on empirical studies of programmers on

Empirical studies of programmers. - Norwood, NJ, USA :

Ablex Publishing Corp., pp. 230--251, 1986.

[31] Truong N., Roe P. and Bancroft P. "Static analysis of
students' Java programs ", Proceedings of the sixth

conference on Australian computing education. -

Darlinghurst, Australia : Australian Computer Society,

Inc., - Vol. 30. - pp. 317--325, 2004.

[32] Vee M.H.N.C., Meyer B. and Mannock K.L. ,

"Understanding novice errors and error paths in Object-

oriented programming through log analysis ",

Proceedings of the Workshop on Educational Data Mining

at the 8th International Conference on Intelligent Tutoring

Systems (ITS 2006), pp. 13-20, 2006.

[33] Winslow L.E. , "Programming Pedagogy--A Psychological

Overview ", SIGCSE Bulletin, pp. 17--22, 1996.

