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ABSTRACT
Our research explores what we call compilation behaviour: the
programming behaviour a student engages in while repeat-
edly editing and compiling their programs. This edit-compile
cycle often represents students’ attempts to make their pro-
grams syntactically, as opposed to semantically, correct. Over
the course of two years, we have observed first-year uni-
versity students learning to program in Java, collecting and
studying thousands of snapshots of their programs from one
compilation to the next. At the University of Kent, students
are introduced to programming in an objects-first style using
BlueJ, an environment intended for use by novice program-
mers.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Informa-
tion Science Education—Behavior, Research

General Terms
Experimentation, Human Factors, Languages, Measurement

Keywords
novice, compiler, compilation, behavior, Java, BlueJ

Roadmap
This paper begins with an exploration of the data collected
in the course of our study, and a discussion of the most im-
mediate conclusions safely drawn from that data. From this
data-driven middle ground, we then explore ways to apply
our results toward improve the tools and methods employed
in teaching novices. Lastly, we discuss how our research re-
lates to other work regarding novice programmers, and close
with possible applications of the tools we have developed, as
well as future research directions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICER’06, September 9–10, 2006, Canterbury, United Kingdom.
Copyright 2006 ACM 1-59593-494-4/06/0009 ...$5.00.

1. COMPILATION BEHAVIOUR
IN THE AGGREGATE

It is not uncommon for novices to engage in iterative cycles
while learning to program. There are large cycles (one as-
signment after another), and small cycles (edit-compile-run).
Our observations of novice programmers focused entirely on
the “edit-compile” interactions students had with the Java
compiler.

Edit Compile

The first-year students from the University of Kent who
took part in our studies were working in BlueJ, a pedagogic
programming environment intended to support the learning
of Java from an objects-first perspective[20, 21]. Their assign-
ments always began with some template code to get them
started, and they often had between three and four weeks to
complete any given assignment. 62 students were obeserved
in the Fall of ’03, 56 in the Spring of ’04 (31 carrying over from
the Fall), and 68 students in the ’04-05 academic year.

Students who participated in our study had “snapshots”
of their programs taken every time they compiled their pro-
gram if they were using BlueJ and working on campus in a
public computing laboratory. When a student compiled their
program, a complete copy of the source of their program,
any output from the compiler, and additional useful meta-
data were captured and shipped to a database. (A complete
description of the data captured can be found in Appendix
A, and directions for obtaining tools to capture and analyse
compilation behaviour data from BlueJ in Appendix C.) As a
matter of pedagogic principle, BlueJ only reports one syntax
error at a time, meaning students in our study only saw one
syntax error at a time.

This information taught us a great deal about novice pro-
grammers and the way they go about writing programs. In
the simplest case, it told us which errors they encounter most
often when learning to program in Java (Figure 1). Further-
more, it told us that the majority of a student’s time correct-
ing syntax errors is spent dealing with only a few different er-
ror types. We then looked at the time students spent between

73



Most common errors, 03/04 & 04/05
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Figure 1: Most common errors encountered by students.

one compilation and the next; in general, students tend to
recompile their programs very quickly (Figure 2). This dis-
tribution shows that it is more likely for a student to tweak
and recompile their program in less than 10 seconds than it
is for them to spend between 11 and 20 seconds, between
21 and 30 seconds, and so on. Their behaviour appears to
depend (in aggregate) on the current state of their program
(Figure 3). When their program contains a syntax error (F),
it is common for students to spend only a handful of sec-
onds reading a syntax error message, editing their code, and
re-compiling. However, when they have a program that is
syntactically correct (T), they are likely to spend a great deal
of time (minutes) adding new code to their programs. This
kind of aggregate data was explored more fully in [14].

The students in our study would appear to write lots of
code in a sitting, and then try and correct all of the syntax
errors at once. This is in keeping with the behaviour we have
observed students exhibit in the classroom. We believe this
strategy is less than effective for many of our students.

2. A VIGNETTE
We captured over 42,000 distinct compilation events in the

course of our study, forming roughly 2100 distinct sessions.
A session implies that a student edited and compiled their
program at least seven times (a tested and reasonable cut-off
for defining the length of a session), and then quit. If they
restarted BlueJ within five minutes of quitting, we consider
this part of the same session, thus accounting for any unfore-
seen crashes or otherwise spurious behaviour on the part of
the development environment. Because of the nature of our
collection, each snapshot in a session is only slightly different
from the previous, and often syntactically incorrect.

What follows is a portion of a compilation session from
Neville, a student who was a first-year during the 2004-2005
academic year. Captured in October, these code fragments
give a sense for what the compilation behaviour of one of
our weaker students looks like. This vignette serves as a
precursor to our discussion of tools for visualising and mak-
ing sense of a novice’s compilation behaviour. While visual
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Figure 2: Time between compilation errors.
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Figure 3: Time between compilations and current program
error state.

and statistical tools are powerful, these were inspired by our
detailed, qualitative readings of student programming ses-
sions.

2.1 The Notebook
Neville’s session captures some of his efforts on the Note-

book project. This project comes directly from chapter four
of Objects First with Java [20]. The Notebook assignment is
interesting to us, as every student in our study had to com-
plete it during their first semester. This means we get a pic-
ture of their programming behaviour early in the learning
process. Perhaps most importantly, students are expected to
add a minimal amount of code to their program as part of
the Notebook project—we can focus our investigation with-
out having to artificially ignore large sections of code written
by the students.
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The Notebook project exposes students to the notion of us-
ing an object to hold several pieces of data, and then collect-
ing up those objects into a Collection of some sort (in this
case, an ArrayList). From Objects First with Java:

We shall model a personal notebook application
that has the following basic features:

• It allows notes to be stored.

• It has no limit on the number of notes it can
store.

• It will show individual notes.

• It will tell us how many notes it is currently
storing.

In working on this code, Neville encountered many syn-
tax errors. The code presented represents one-third of one
session, captured in October of 2004. Specifically, the first 15
minutes of a 45-minute programming session are presented,
focusing entirely on just a few lines of code.

2.2 Snapshots of Neville
From the start of the session to the first compilation, Neville

added nine lines of code to his program. Specifically, he
wrote the removeNote method in its entirety. He then made
one edit, recompiling his code just five seconds after com-
pleting this block: he added a semicolon on line 66.

Before
059 //A class to remove a note

060 public void removeNote(int noteNumber)

061 {

062 if(noteNumber < 0) {

063 // ... do nothing.

064 }

065 else if(noteNumber < numberOfNotes()) {

066 notes.remove(noteNumber)

067 }

068 }

After
059 //A class to remove a note

060 public void removeNote(int noteNumber)

061 {

062 if(noteNumber < 0) {

063 // ... do nothing.

064 }

065 else if(noteNumber < numberOfNotes()) {

066 notes.remove(noteNumber);

067 }

068 }

It might seem impressive that Neville could add an entire
method to his program and be almost 100% correct in doing
so. However, this method is actually provided on page 85
of Objects First with Java. We don’t know if Neville was ref-
erencing the text when he wrote this code—but we suspect
that he must have been, as his later compilation behaviour is
not nearly so correct or succinct.

It is the addition of the listAllNotes() method that in-
terests us more: thirteen lines written in four minutes. In
particular, we will focus in on lines 71 through 74, although
there are troubling errors elsewhere in Neville’s code.

070 //List all the notes in the arraylist

071 public void listAllNotes()

072
073 int indexNum

074 {
075 if(noteNumber < 0) {
076 // ... do nothing.

077 }
078 else

079 while (indexNum < numberOfNotes) {
080 System.out.println(notes.get(indexNum));

081 indexNum++ ;

082 }
083

If we look closely at lines 71 through 74, we see that Neville
has introduced the indexNum outside of the opening { of
the method listAllNotes(); it is not likely that an experi-
enced Java programmer would make this mistake. The code
could be made more correct by swapping lines 73 and 74. It
takes Neville thirty minutes, and many edits, to discover this
for himself.

What Neville wrote...
070 //List all the notes in the arraylist

071 public void listAllNotes()

072
073 int indexNum

074 {

... and the correction needed.
070 //List all the notes in the arraylist

071 public void listAllNotes()

072
073 {

074 int indexNum

Neville does not make this correction, and furthermore,
the compiler is not helping. In response to what he wrote,
a ’;’ expected error is reported by the compiler on line
72. In response to this error, Neville adds a semicolon to his
code—on line 73.

Before
070 //List all the notes in the arraylist

071 public void listAllNotes()

072
073 int indexNum

074 {

After
070 //List all the notes in the arraylist

071 public void listAllNotes()

072
073 int indexNum;

074 {

Perhaps Neville doesn’t believe the compiler, or perhaps
he missed the error—any bump of the keyboard or click of
the mouse in BlueJ would clear the error message from the
status bar in his editor. Whatever his reasons, Neville recom-
piles his program; again, a ’;’ expected error is reported
on line 72. In three seconds, Neville looks at the error, the lo-
cation of the error, his code, and then adds another semicolon
to his program at the end of line 71. Sadly, this is syntactically
correct in some contexts, but it is unlikely that a novice Java
programmer would ever need to declare a method header
(by itself) and terminate it with a semicolon.
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Before
070 //List all the notes in the arraylist

071 public void listAllNotes()

072
073 int indexNum;

074 {

After
070 //List all the notes in the arraylist

071 public void listAllNotes();

072
073 int indexNum;

074 {

Because this addition is, potentially, a syntactically correct
location for a semicolon, the compiler yields a rather uncom-
mon and unhelpful syntax error:

missing method body, or declare abstract

After one minute and seven seconds, Neville recompiles
his program without making any changes to the source code—
again, perhaps to refresh the error, or perhaps in hopes that
he’ll end up with a syntax error that implies some obvious
way forward. Fifteen seconds after this recompile, he re-
moves one character from his program—the semicolon he
had just added to line 71.

As a result, the compiler once again reports ’;’ expected
on line 72. Neville then makes a small diversion elsewhere in
his program, and returns to the listAllNotes() method,
where he decides to remove the semicolon from the end of
line 73. Thirteen minutes into the session, this brings Neville
back to where he started. Arguably, no progress has been
made.

2.2.1 Remove the error
After nearly a quarter of an hour, Neville has not man-

aged to correct what experienced programmers might con-
sider to be an obvious syntax error. After trying the most
obvious fixes (adding a semicolon when and where the com-
piler reports a ’;’ expected), Neville proceeds to employ
a technique that we’ve seen students use time and again; if
we were to give this behaviour a name, we would call it “re-
move the error.”

“Remove the error” manifests itself differently in different
sessions. Sometimes students remove one or more lines of
code completely, only to paste it back into their program sev-
eral compilations later. In other cases, students employ block
comments to comment out an entire method or methods. In
this case, Neville comments out one line only: line 73.

Before
070 //List all the notes in the arraylist

071 public void listAllNotes()

072
073 int indexNum

074 {

After
070 //List all the notes in the arraylist

071 public void listAllNotes()

072
073 //int indexNum

074 {

“Remove the error” is a common strategy that we observed
numerous times in our analysis, but it is uncommon to see it

used successfully. By all appearances, students have been
lost and confused when this pattern of code removals and
insertions is observed in a session. It is a difficult strategy to
use effectively.

In a quarter of an hour, Neville has successfully eliminated,
but not fixed, one syntax error from his program without
making substantial progress towards a more syntactically cor-
rect program. This “fix” has only opened up the doors for
other related errors that end up confusing Neville further.
Over the next fifteen minutes, he wrestles with errors related
to this misplaced variable declaration—adding and remov-
ing it, renaming it and other variables in his program—until
near the very end of the session, where he “sees” or other-
wise “discovers” his true error, and corrects it. In truth, our
data collection method does not help us understand how or
why Neville made this critical fix: he may have discovered
the error himself, or he may have asked a friend or instruc-
tor.

2.3 Stoppers vs. Movers?
Another behaviour we have observed in many of our stu-

dents’ traces is that they will “move on” from a particularly
problematic piece of code, regardless of whether they have
corrected any syntax error that may be lingering (such as the
error Neville was facing). Stronger students will ignore a
syntax error to work on some other part of their program,
later return to the the error, and fix it. With students like
Neville, however, this is less common. Often, when they
move to some other part of their program without fixing an
error, they only manage to introduce a new, unrelated syntax
error that they then proceed to get stuck on. In either case,
this kind of behaviour reminds us of investigations carried
out by Perkins, Hancock, Hobbs, Martin, and Simmons at
Harvard regarding the investigation of beginners working in
BASIC and LOGO[28].

The explorations of Perkins et al. focused on how stu-
dents can learn to program (and develop effective problem-
solving strategies) without the aid of carefully designed in-
struction. By observing and interacting with students en-
gaged in writing programs to solve small problems, they de-
veloped a theory of stoppers, movers, and tinkerers. Stoppers
are students who, when faced with a difficult problem, will
give up, or otherwise ask for help without working the prob-
lem through themselves. Movers and Tinkerers, however,
will explore the problem—sometimes systematically, some-
times successfully—hopefully to keep moving towards a prob-
lem solution.

We find their summary to be quite compelling:

... for novice programmers, tinkering has both
positive and negative features. On the positive
side, it is a symptom of a mover rather than a
stopper: the tinkerer is engaged in the problem
and has some hope of solving it. With sufficient
tracking to localize the problem accurately and
some systematicity to avoid compounding errors,
tinkering may lead to a correct program. On the
negative side, students often attempt to tinker with-
out sufficient tracking, so that they have little grasp
of why the program is behaving as it is. They
assume that minor changes will help, when in
fact the problem demands a change in approach.
Finally, some students allow tinkers to accumu-
late untested or leave them in place even after
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they have failed, adding yet more tinkerers un-
til the program becomes virtually incomprehen-
sible[28].

In our exploration of many hundreds of sessions—of which
Neville’s is a very condensed example—we find that Perkins
et al. have captured our own observations very succinctly.
Although they are discussing students attempting to correct
the semantics of their programs, our data suggests that stu-
dents exhibit similar behaviours when struggling with the
syntax of the language. It was this behavioural description
of novice programmers that captured our imagination early
in our work; we hoped to uncover more behaviours like “re-
move the error,” and perhaps put these to work in under-
standing and teaching novice programmers.

Reading through sequences of edits or syntactically incor-
rect programs is fundamentally an exercise in sense-making.
To better understand what our students were doing, we de-
veloped tools for visualising and navigating the snapshots
we captured during their programming efforts. These tools
yielded many interesting insights, and may yet prove to be
useful to both practitioners and researchers alike.

3. USING COLOUR AND LINE
In approaching the data from a new student and/or ses-

sion, the same questions were asked over and over regarding
the programs students had written:

• Were there any large edits in the session?

• Were there any long edits, where a large amount of time
passed?

• Were there any particularly problematic syntax errors?

• Did the student focus their effort on one part of the pro-
gram only? Or, were their edits scattered throughout
their program over the course of the session?

These and other related questions evolved as a side ef-
fect of our grounded theoretic approach to understanding
the massive amount of code we had available[11, 29, 37].
Once we settled into our document analysis, we began an
iterative process in which we would make notes on sessions,
collect and compare those notes to other sessions we had ob-
served previously, and begin looking for commonalities be-
tween sessions. While we found it difficult to highlight be-
havioural similarities between students, we did observe that
we were asking the same questions over-and-over as our in-
vestigation progressed. Furthermore, we noted that many of
the questions could be quantified, either directly from meta-
data in our database, or through the analysis of programs
written by students. This ultimately led to a working visual-
isation of students’ sessions.

Table 1 in Appendix B is a visualisation of the first 40 com-
pilations from Neville’s session that was discussed earlier; it
represents the current state of our visualisation’s evolution.
Each row represents the changes that took place as the stu-
dent edited their program in between one compilation to the
next. The first column, ErrType, tells us which syntax error
was reported by the compiler; 86 distinct types of syntax er-
ror are recognized in our study. Each syntax error type is as-
signed a distinct colour, which allows us to quickly glance at
this column and see if the students struggled over a sequence

of compilations with one type of syntax error or many differ-
ent types. The ? represents an error-free compilation.

The second column, ∆T, tells us approximately how much
time the student spent working on their code in between
compilations. There are five bins: 0-10 seconds, 20-30 sec-
onds, 30-60 seconds, 60-120 seconds, and more than two min-
utes. ∆Ch is the number of characters changed between one
compilation and the next; negative numbers mean the stu-
dent removed code between compilation and the next, while
positive numbers indicate they added code.

The Location column is incredibly useful. The span of the
column (effectively) represents the length of the file. The dot
(or dots) show us where the student edited their program in
between one compilation and the next. The shaded rectangle
shows the location of any syntax errors that were reported
in the previous compilation. As a result, one can see both
where the compiler reported an error and where the student
chose to edit their code in response to that error in a one-
dimensional plot.

In looking at Neville’s session (Table 1), it can be seen how
he spends many compilations wrestling with error type #1
(’;’ expected), and spends the majority of his time edit-
ing his program in one place near the end of the file. When
he does encounter another type of syntax error, it is in the
same place as the ’;’ expected error, likely implying
that he is still dealing with the same underlying problem.

Visualising novice programming sessions provided us with
a powerful tool for exploring the behaviour of more students
in less time. Perhaps most importantly, as researchers we
were no longer bogged down in reading code one compila-
tion at a time; now, we could quickly scan over dozens of
compilations events, and say things like “Wow. It looks like
they were stuck!” By rendering these visualisations out to
HTML, embedded hyperlinks allowed us to quickly jump
into the source code representing a given compilation, and
begin our compile-by-compile investigation anywhere in the
dataset. They provided a powerful map into our data, and
we intend to continue evolving the visualisation as a tool,
both for future research and practical use. This will be dis-
cussed further in section 5.1.

4. THE ERROR QUOTIENT
If one can algorithmically visualise the quantitative aspects

of a novice’s programming behaviour, it seems possible to
quantify that behaviour as well. In many ways, quantifying
novice compilation behaviour represents one possible con-
clusion of a grounded theoretic process. The goal of grounded
theory is to build theory based on data[11]; our quantifica-
tion of novice compilation behaviour represents one possi-
ble theory regarding the edit-compile cycle that evolved out
of our iterative readings, re-readings, and visualisations of
novice programming sessions.

With the advent of a visualisation tool, our characteriza-
tion of programming sessions was no longer grounded only
in verbose notes, but was improved by our ability to search
for and make note of cues in our visualisation. The kinds of
questions we asked about a session became very concise: is
there a large block of one colour in the ErrType column? If
so, they must have wrestled with one error type for a long
time. Likewise, do a bunch of dots and rectangles line up
in the Location column? If so, that means they were stuck
on the same piece of code, even if the error type changes. In
the case of both conditions, it was clear that the student was
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struggling—a fact that could easily be ascertained by quickly
reading through the session. Having this high-level map of a
session made it far easier to make sense of a student’s code,
as opposed to puzzling through their efforts entirely from the
ground up.

Beginning with the compilation behaviour that had been
observed and considered to be “bad”—that is, behaviour that
did not seem to move a student towards syntactically cor-
rect code—a simple algorithm was devised by which to score
each session. This algorithm takes into account the type and
location of syntax errors, as well as their frequency, and yields
a single number (normalized 0→1) which characterizes the
session. Given a session of compilation events e1 through
en:

Collate Create consecutive pairs from the events in the ses-
sion, eg. (e1 , e2), (e2 , e3), (e3 , e4), up to (en−1 , en).

Calculate Score each pair according to the algorithm pre-
sented in Figure 4.

Normalize Divide the score assigned to each pair by 11 (the
maximum value possible for each pair).

Average Sum the scores and divide by the number of pairs.
This average is taken as the error quotient (EQ) for the
session.

We call the number that describes a student’s program-
ming session the error quotient, or EQ. The error quotient
characterizes how much or how little a student struggles with
syntax errors while programming. At the extremes, a per-
fect EQ for a given session would be 0.0; this does not imply
that the student made no mistakes, or had no syntax errors
in their programming process. Instead, it means that at no
point did a student encounter a syntax error more than one
compilation in a row. However, a session scoring 1.0 would
imply that every single compilation ended in a syntax error,
and each error was the same in each successive compilation.

The algorithm presented in Figure 4 and the penalties as-
signed were not the result of random guesswork. Initially, we
experimented with how we might weight the penalties of a
repeated syntax error vs. two consecutive errors of different
types. We found that our choices resulted in a distribution
of EQ values for our entire population ranging from 0.0 to
0.6. This seemed too narrow a distribution, and we felt that
a better separation of individuals should be possible.

In an attempt to spread the population out, we carried out
a brute-force search of the space surrounding the algorith-
mic parameters originally chosen. We selected the set of pa-
rameters that maximized the spread of the EQ distribution
while simultaneously minimizing the standard deviation of
EQ scores in each session for each individual. This yielded
a distribution of EQ scores with less variation for each indi-
vidual student, while maximizing the distance between indi-
viduals.

We found at this point that some filtering of our data was
necessary; the full population of 161 subjects included stu-
dents for whom there was only one session recorded. In
moving from a qualitative analysis to a more quantitative
analyses, these outliers became troublesome. By limiting our
sample to students for whom there were at least two sessions
in the database, 16% of the sample was lost; in limiting our
sample to students with three or more sessions, 40% of our
sample was dropped. Only 96 students, over the course of

Start

End

Both e's end 
in err? Add 8

Same err
type?

Add 3

Y

Y

N

N

Figure 4: The EQ Algorithm.

two, one-year studies, used the public laboratories three or
more times for working on their programs.

The impact of this filtering was significant for our statisti-
cal work; see [15] for a complete discussion. Our filtering left
us with a Gaussian distribution of EQ scores for the 96 stu-
dents whom we had enough data to reason about confidently
(Figure 5).

5. EQ AS A PREDICTOR?
In examining the relationship between a student’s EQ and

their performance on traditional homework- and exam-based
grades, we limited our population further to those students
enrolled during the 2004-2005 academic year (56 students).
We had the most contiguous compilation data for students
enrolled during this academic year, and their performance
both on assignments and examinations was statistically equiv-
alent to those students who did not take part in our study[15].

There is a distinct correlation between a student’s EQ and
both the average grades they receive on assignments and
their final exam (Figures 6,7). The low quality of the fit to stu-
dent assignment data might be explained by any number of
factors: given cheating rates reported as high as 10%-15% in
the literature[3, 22], and the relatively variable nature of as-
signments (students deciding not to turn work in, etc.), this is
neither surprising nor distressing. While the fit is significant,
its quality is poor (R2 of 0.11). The relationship between a
student’s EQ value and their final exam grades is more sig-
nificant, but again the trend is still very poor (R2 = 0.25).
Only a more complete dataset – perhaps including all of a
student’s programming behaviour, as opposed to limited, in-
lab snapshots – will allow us to further explore the statistical,
as opposed to qualitative, relationships between a student’s
course mark and EQ.
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We cannot actually make any strong claims about whether
a first-year student’s compilation behaviour can be used as a
predictor for their performance on traditional, exam-based
metrics. We are missing an unknown amount of data for
each student—how often did they work on their programs at
home vs. in a public laboratory? What was their behaviour
like there? There are many unknowns, and only further in-
vestigation with more complete a more complete dataset will
begin to address them.

5.1 Putting tools to use
Our work involved the development of three separate tools

for the study of novice compilation behavior.

1. A “code browser” that allows an instructor to easily
read successive compilations of a single program,

2. a visualisation that captures the types and frequency of
syntax errors encountered by novices in a single pro-
gramming session, and

3. an algorithm by which we can score sessions and quan-
titatively compare one session against another.

These are powerful tools for observing novices engaged
in the act of programming. In fact, there is a single, critical
difference between these tools and traditional measures of
student progress like assignments and exams: they are for-
mative measures of student progress as opposed to summa-
tive measures (which are far more commonly employed in
CS classrooms)[1]. An assignment may be given to students
one week, collected the next, and fed back (graded) a day
or week later. However, it is a snapshot in time, and only
represents a “finished” product; the instructor has no idea
whether a student completed the assignment quickly while
watching TV or struggled hour after hour attempting to get
their program to compile, let alone be semantically correct.
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Figure 6: EQ vs. average assignment grades for the 04/05
academic year.

Residual standard error: 10.79 on 45 degrees of freedom
Multiple R-Squared: 0.13, Adjusted R-squared: 0.11
F-statistic: 6.86 on 1 and 45 DF, p-value: 0.012
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Figure 7: EQ vs. final exam grades for the 04/05 academic
year.

Residual standard error: 11.86 on 45 degrees of freedom
Multiple R-Squared: 0.27, Adjusted R-squared: 0.25
F-statistic: 16.4 on 1 and 45 DF, p-value: 0.0002
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By comparison, it is possible to compute the EQ of a session
live and in real-time; certainly, an instructor could look at the
EQ and visualisations of student programming sessions eas-
ily on a daily basis, even for hundreds of students, and get a
sense for how they are doing.

With this kind of window into a student’s behaviour, many
early interventions can be imagined for students who are
struggling. A recommendation that they consider coming
in for additional tutoring, or attend the next help session
led by a teaching assistant, is only an email away. The in-
structor might also form peer groups of students and rec-
ommend they study together; this kind of group work in
programming is often formalized as “pair programming” in
CS classrooms[39, 40, 41]. The development of tutorial con-
tent or other supporting materials is another possibility—in
particular, tools that students can use to practice program-
ming and focus in on what is challenging them at a given
moment. Some initial steps have already been taken in ex-
tending BlueJ to include focused tutorial content of this na-
ture; see http://trails.cs-ed.org/ for our initial efforts in this
area.

6. THE RELATED AND FUTURE WORK
Practitioners have been trying to support novices in the

task of writing syntactically and semantically correct pro-
grams for many years. Both DITRAN and WATFOR were
FORTRAN compilers developed in the mid-1960s with er-
ror handling and reporting mechanisms intended to make
life easier for the beginner[4, 27, 31]. As interactive termi-
nals became more common, both flowcharts and structured
editors (placing rigid, syntactic constraints on the user) be-
come more common as tools for teaching programming[5,
13, 32, 38]; these tools never quite took hold. The last fifteen
years have instead been dominated by pedagogic program-
ming environments that focus more on supporting the stu-
dent by providing clear syntax errors and a simple IDE inter-
face[10, 21], restricted views into the language (eg. language
levels)[6, 9], or visualisations of the run-time behaviour of
programs[12, 19, 26].

In terms of research, many studies have focused on stu-
dents’ mental models or the misconceptions students have
when actively engaged in writing programs[2, 24, 33, 34].
In the case of Soloway and Spohrer’s work, this grew into
a theory of goals and plans[36]. While we collected programs
automatically like they did (they referred to this as an on-
line protocol), our work differs in one very important way.
Soloway and Spohrer, in formulating their goal/plan eval-
uation of novice programmers, only examined the first syn-
tactically correct program written by the students they were
studying. Their argument was that they could observe the
“misconceptions” students had about how to solve a given
problem by looking at this one snapshot in time.

From our point of view, Soloway and Spohrer worked pri-
marily in a cognitive context. They were concerned with the
mental processes that students went through while writing
programs and attempting to fix the semantic errors they en-
countered along the way. Their work grew out of a desire
to model this “buggy” process algorithmically (in the form
of MARCEL), and as a result they collected data and applied
analytical techniques appropriate to their question[35]. By
way of contrast, our work looks explicitly at the behaviour
of novice programmers who are wrestling with syntactic con-
cerns in the language. By identifying and understanding

the behaviour of novices learning to program, we hope to
build up to later making sound cognitive and constructivist
inquiries and recommendations[7].

The work of Myers and Ko regarding interfaces for pro-
gramming environments—novice or expert—is encouraging
work that is driven, first and foremost, by user behaviour
and needs[16, 17, 18]. Likewise, distributed, multi-national
studies like that carried out by McCracken et al., Bootstrap-
ping CS Education Research, Scaffolding CS Education Research,
and both BRACE and BRACElet provide a model for a com-
munity of researchers to ask a question, collect a large amount
of (potentially) diverse data, and address a research question
from a number of different perspectives[8, 23, 25, 30]. In all of
these cases, the researchers are looking not so much to prove
a theory as to answer a question, which we feel is an impor-
tant distinction to be made.

Looking forward, we hope to evolve the visualisation tools
we have developed as well as our understanding of novice
compilation behaviour. By using these tools live with real
students, we can iterate and evolve our visualisation tools
with an instructor. In addition, we can explore automatic
mechanisms for encouraging students to break out of repet-
itive error cycles within more controlled, experimental con-
texts. While this sounds like the Microsoft paperclip (“It looks
like you’re stuck on a ’;’ expected error!”), our goal is to
encourage students to work more efficiently—and changing
their behaviour may be one way to achieve this goal.

In addition to examining how both instructors and stu-
dents can make use of this kind of behavioural data, we will
investigate expanding the scope of our data collection. Cur-
rently, we know very little about what students do between
compilations. Classroom observation is one way to improve
our understanding of what happens from one compilation to
the next. Another is to instrument the programming environ-
ment to give us more information about what the students
do when their program is syntactically correct. Did they cre-
ate and test objects using BlueJ’s object-interactive features?
Did they run a suite of unit tests provided by the instruc-
tor? These kinds of questions can give us further insight into
how students interact with their programs, and lift us out of
the purely syntactic view of programming that we have cur-
rently.
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APPENDIX
A. DATA CAPTURED

Data captured in the course of our study was posted via
HTTP to a webserver (so as to circumnavigate firewalls), and
was then injected into a Postgres database. It would then
be processed and copied into a set of “cleaned,” or other-

wise finished, tables. Only the tables used for analysis are
described here.

A.1 The metas table
The metas table contained nine columns: (int) index,

(int) cindex, (int) session, (txt) uname, (int)
result, (int) client start,(int) server receive,
(txt) hostname, and (txt) host type. The index pro-
vides a unique index to the event captured, while cindex
provides a session-specific counter, reset whenever a student
engages in a new programming session. The uname field is
the student’s university-wide unique username, and result
is actually binary (0 or 1), and tells us whether a particular
compilation event was error-free or not. The client start
field is generally disregarded; for consistency, all of our tim-
ing data is based on the server receive field; any network
latency effects are likely lost in our rounding of all timing
data up to the nearest second. Currently, hostname and
host type do not factor into our analyses, but are important
metadata to have associated with each compilation event.

A.2 The errors table
Each entry in the metas table may have one or more en-

tries in the errors table associated with it. This is because
it is possible for the student to have more than one file open
when they compile their program, each which may gener-
ate an error or warning when compiled. The errors table
contained eleven columns: (serial) index, (int) meta,
(int) sess, (txt) uname, (int) etype, (int) etime,
(txt) emsg, (int) eline, (txt) project, (txt) fname,
and (txt) file.

We are rarely interested in the particular index into the
table; our queries typically involve joining across the meta
field, which is an index into the metas table. Both the sess
and uname fields are copied out of the other table, largely
because we are not database experts. The etype indicates
whether the event was the result of an error, a warning, or
a successful compilation; the etime comes from the client,
not the server. The emsg is the full message reported by the
compiler, if any, and eline the line in the file (again, as re-
ported by the compiler). The project field gives us the full
path to the BlueJ project, which therefore gives us the project
name—students will sometimes do a “Save As,” explore an
idea, and then switch back to the first project. This kind of re-
naming of projects means we cannot simply use the filename
(fname) as a unique identifier for a file. The file field is the
largest in the database, as it contains the complete source for
a students program as captured at the time of compilation.

B. NEVILLE’S FIRST SESSION
The partial session depicted in Table 1 represents our cur-

rent working visualisation for novice compilation sessions.
We have two output formats: HTML and LATEX. The version
included here lacks the rich hyperlinking that our HTML ver-
sion provides—the presentation differences between the two,
however, are minimal at this time.

C. OBTAINING TOOLS
The tools described in this paper exploring novice com-

pilation behaviour in BlueJ, as expert tools, were not fit for
distribution. However, they will ultimately be available for
download under the bluej.org domain.
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Table 1: Neville, Session 1
Project: notebook1 File: Notebook.java
Duration: 42m53s EQ: 0.6
Date: Thursday, November 4th, 2004 11:09am

# Err Type ∆T ∆Ch Location

1 1 201 t
2 ? 1 t
3 1 239 t
4 1 1 t
5 25 1 t
6 25 0

7 1 -1 t
8 1 12 t
9 1 0

10 1 0

11 1 -1 t
12 2 2 t
13 1 -11 t
14 2 2 t
15 2 -1 t
16 1 -2 t
17 1 -1 t
18 1 1 t
19 1 -73 t
20 1 13 t
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Neville, Session 1, Continued...

# Err Type ∆T ∆Ch Location

21 1 0

22 1 -10 t
23 1 0

24 1 0

25 1 1 t
26 1 -1 t
27 1 2 t
28 2 2 t
29 1 -4 tt
30 1 0

31 1 -9 tt
32 25 1 t
33 1 -1 t
34 1 0

35 1 0

36 1 459 tt
37 1 0 ttt
38 1 17 t
39 1 0

40 14 2 t
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